Skip to main content
Log in

Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG-GPLs patches exposed to longitudinal magnetic field

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Motivated by progressive sandwich structures’ usage due to their high strength to weight ratio in different industries, the current paper aimed at evaluating static and dynamic behaviors of three-layered cylinders including FG porous core and two graphene nanoplatelet (GPLs)-reinforced composite as face sheets. The whole sandwich cylinder rests on Pasternak substrate and it is also exposed to a longitudinal magnetic field. Epoxy has used as matrix and GPLs as the reinforcing phases for top and bottom face sheets and based on the rule of mixture and Halpin–Tsai micromechanical models, effective values for mechanical properties of skins are gained. Besides, regarding the integrity of current research, all layers of model are assumed to be FG, which means for the porous core the placement of the pores is considered and for the faces, the GPLs dispersion patterns are regarded. Among different shell theories, sinusoidal shear deformation shells theory (SSDST) is utilized to define displacement components along with the major axes. Hamilton’s principle is hired to attain governing equations for vibrational and buckling analyses. In the end, the effects of different variables’ alternation as the model’s geometry, foundation moduli, mode number, and mid-radius on vibrational and buckling behaviors are interpreted in type of different plots and tables. Pores’ placement and GPLs dispersion patterns play important roles in static and dynamic responses of the under-consideration cylinder. The outcomes of this study may help to create more efficient engineering structures such as pressure vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Burton WS, Noor AK (1994) Three-dimensional solutions for thermomechanical stresses in sandwich panels and shells. J Eng Mech 120:2044–2071. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2044)

    Article  Google Scholar 

  2. Kumar V, Singh AV (1995) Vibrations of composite noncircular cylindrical sliells. J Vib Acoust Trans ASME 117:470–476. https://doi.org/10.1115/1.2874485

    Article  Google Scholar 

  3. Chakrabarti A, Bera RK (2002) Nonlinear vibration and stability of a shallow unsymmetrical orthotropic sandwich shell of double curvature with orthotropic core. Comput Math Appl 43:1617–1630. https://doi.org/10.1016/S0898-1221(02)00123-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang KH, Dasgupta A (1995) A layer-wise analysis for free vibration of thick composite cylindrical shells. J Sound Vib 186:207–222. https://doi.org/10.1006/jsvi.1995.0444

    Article  MATH  Google Scholar 

  5. Arshid E, Khorshidvand AR (2018) Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin Walled Struct 125:220–233. https://doi.org/10.1016/j.tws.2018.01.007

    Article  Google Scholar 

  6. Mousavi SM, Aghdam MM (2009) Static bending analysis of laminated cylindrical panels with various boundary conditions using the differential cubature method. J Mech Mater Struct 4:509–521. https://doi.org/10.2140/jomms.2009.4.509

    Article  Google Scholar 

  7. Li Y, Li F, He Y (2011) Geometrically nonlinear forced vibrations of the symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries. Compos Struct 93:360–368. https://doi.org/10.1016/j.compstruct.2010.09.006

    Article  Google Scholar 

  8. Bui TQ, Van DT, Ton LHT et al (2016) On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos Part B Eng 92:218–241. https://doi.org/10.1016/j.compositesb.2016.02.048

    Article  Google Scholar 

  9. Liu S, Yu T, Van LL et al (2019) Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct 212:173–187. https://doi.org/10.1016/j.compstruc.2018.10.009

    Article  Google Scholar 

  10. Mehar K, Panda SK, Bui TQ, Mahapatra TR (2017) Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM. J Therm Stress 40:899–916. https://doi.org/10.1080/01495739.2017.1318689

    Article  Google Scholar 

  11. Amir S, Soleimani-Javid Z, Arshid E (2019) Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM Zeitschrift fur Angew Math und Mech 99:1–21. https://doi.org/10.1002/zamm.201800334

    Article  MathSciNet  Google Scholar 

  12. Arshid E, Amir S, Loghman A (2020) Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci 180:105656. https://doi.org/10.1016/j.ijmecsci.2020.105656

    Article  Google Scholar 

  13. Amir S, Arshid E, Khoddami Maraghi Z et al (2020) Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. JVC/J Vib Control 26:1523–1537. https://doi.org/10.1177/1077546319899203

    Article  MathSciNet  Google Scholar 

  14. Arshid E, Arshid H, Amir S, Mousavi SB (2021) Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng 21:6. https://doi.org/10.1007/s43452-020-00150-x

    Article  Google Scholar 

  15. Sahmani S, Aghdam MM (2017) Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur Phys J Plus 132:1–17. https://doi.org/10.1140/epjp/i2017-11773-4

    Article  Google Scholar 

  16. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189. https://doi.org/10.1007/s00366-018-0657-8

    Article  Google Scholar 

  17. Arshid E, Khorshidvand AR, Khorsandijou SM (2019) The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT. Struct Eng Mech 70:97–112. https://doi.org/10.12989/sem.2019.70.1.097

    Article  Google Scholar 

  18. Arshid H, Khorasani M, Soleimani-Javid Z et al (2020) Quasi-3D hyperbolic shear deformation theory for the free vibration study of honeycomb microplates with graphene nanoplatelets-reinforced epoxy skins. Molecules 25:5085. https://doi.org/10.3390/molecules25215085

    Article  Google Scholar 

  19. Safarpour H, Esmailpoor Hajilak Z, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15:569–583. https://doi.org/10.1007/s10999-018-9431-8

    Article  Google Scholar 

  20. Mirjavadi SS, Forsat M, Nia AF et al (2020) Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells. Adv Nano Res 8:156. https://doi.org/10.12989/ANR.2020.8.2.149

    Article  Google Scholar 

  21. Mirjavadi SS, Forsat M, Barati MR, Hamouda AMS (2020) Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite. Steel Compos Struct 36:63–74. https://doi.org/10.12989/scs.2020.36.1.063

    Article  Google Scholar 

  22. Mirjavadi SS, Forsat M, Barati MR et al (2020) Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme. Steel Compos Struct 35:777. https://doi.org/10.12989/SCS.2020.35.6.765

    Article  Google Scholar 

  23. Pydah A, Batra RC (2018) Analytical solution for cylindrical bending of two-layered corrugated and webcore sandwich panels. Thin Walled Struct 123:509–519. https://doi.org/10.1016/j.tws.2017.11.023

    Article  Google Scholar 

  24. Amir S, Khorasani M, BabaAkbar-Zarei H (2018) Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636218795385

    Article  Google Scholar 

  25. Amir S, BabaAkbar-Zarei H, Khorasani M (2020) Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech Based Des Struct Mach 48:146–163. https://doi.org/10.1080/15397734.2019.1624175

    Article  Google Scholar 

  26. Sun G, Wang E, Zhang J et al (2020) Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse. Int J Impact Eng 135:103327. https://doi.org/10.1016/j.ijimpeng.2019.103327

    Article  Google Scholar 

  27. Trabelsi S, Frikha A, Zghal S, Dammak F (2019) A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng Struct 178:444–459. https://doi.org/10.1016/j.engstruct.2018.10.047

    Article  Google Scholar 

  28. Shahgholian-Ghahfarokhi D, Rahimi G (2020) A Sensitivity study of the free vibration of composite sandwich cylindrical shells with grid cores. Iran J Sci Technol Trans Mech Eng 44:149–162. https://doi.org/10.1007/s40997-018-0255-9

    Article  Google Scholar 

  29. Sankar A, Natarajan S, Merzouki T, Ganapathi M (2017) Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced facesheets. Int J Struct Stab Dyn 17:1750100. https://doi.org/10.1142/S0219455417501000

    Article  MathSciNet  Google Scholar 

  30. Mohammadi M, Bamdad M, Alambeigi K et al (2019) Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets. Compos Struct 225:111119. https://doi.org/10.1016/j.compstruct.2019.111119

    Article  Google Scholar 

  31. Eyvazian A, Hamouda AM, Tarlochan F et al (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core. Steel Compos Struct 33:891–906. https://doi.org/10.12989/scs.2019.33.6.891

    Article  Google Scholar 

  32. Arshid E, Amir S, Loghman A (2020) Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-composite layers. J Sandw Struct Mater. https://doi.org/10.1177/1099636220955027

    Article  Google Scholar 

  33. Thai CH, Ferreira AJM, Tran TD, Phung-Van P (2020) A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos Struct 234:111695. https://doi.org/10.1016/j.compstruct.2019.111695

    Article  Google Scholar 

  34. Chen D, Yang J, Kitipornchai S (2017) Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 142:235–245. https://doi.org/10.1016/j.compscitech.2017.02.008

    Article  Google Scholar 

  35. Afshari H, Adab N (2020) Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1713158

    Article  Google Scholar 

  36. Khorasani M, Soleimani-Javid Z, Arshid E et al (2020) Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced epoxy skins with stretching effect. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113430

    Article  Google Scholar 

  37. Safaei B (2020) The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos Struct 35:659–670

    Google Scholar 

  38. Fan F, Sahmani S, Safaei B (2021) Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112969

    Article  Google Scholar 

  39. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.105966

    Article  Google Scholar 

  40. Berghouti H, Bedia EAA, Benkhedda A, Tounsi A (2019) Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv Nano Res 7:351–364. https://doi.org/10.12989/anr.2019.7.5.351

    Article  Google Scholar 

  41. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111141

    Article  Google Scholar 

  42. Sahmani S, Safaei B (2021) Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Model 89:1792–1813. https://doi.org/10.1016/j.apm.2020.08.039

    Article  MathSciNet  MATH  Google Scholar 

  43. Mahesh V, Harursampath D (2020) Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput. https://doi.org/10.1007/s00366-020-01098-5

    Article  Google Scholar 

  44. Chen H, Song H, Li Y, Safarpour M (2020) Hygro-thermal buckling analysis of polymer–CNT–fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM. Eng Comput. https://doi.org/10.1007/s00366-020-01102-y

    Article  Google Scholar 

  45. Behdinan K, Moradi-Dastjerdi R, Safaei B et al (2020) Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol Rev 9:41–52. https://doi.org/10.1515/ntrev-2020-0004

    Article  Google Scholar 

  46. Khiloun M, Bousahla AA, Kaci A et al (2020) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput 36:807–821. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  47. Qiu J, Sahmani S, Safaei B (2020) On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1853567

    Article  Google Scholar 

  48. Civalek Ö, Avcar M (2020) Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput. https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  49. Dehghan M, Ebrahimi F, Vinyas M (2020) Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes. Eng Comput 36:1687–1703. https://doi.org/10.1007/s00366-019-00790-5

    Article  Google Scholar 

  50. Fattahi AM, Safaei B, Moaddab E (2019) The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates. Steel Compos Struct 32:281–292. https://doi.org/10.12989/scs.2019.32.2.281

    Article  Google Scholar 

  51. Amir S, Arshid E, Rasti-Alhosseini SMA, Loghman A (2020) Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment. J Therm Stress 43:133–156. https://doi.org/10.1080/01495739.2019.1660601

    Article  Google Scholar 

  52. Ansari R, Hasrati E, Torabi J (2020) Effect of external pressure on the vibration analysis of higher order shear deformable FG-CNTRC spherical panels. Eng Comput. https://doi.org/10.1007/s00366-020-01138-0

    Article  Google Scholar 

  53. Bui TQ, Khosravifard A, Zhang C et al (2013) Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng Struct 47:90–104. https://doi.org/10.1016/j.engstruct.2012.03.041

    Article  Google Scholar 

  54. Yu T, Hu H, Zhang J, Bui TQ (2019) Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin Walled Struct 138:1–14. https://doi.org/10.1016/j.tws.2018.12.006

    Article  Google Scholar 

  55. Hu H, Yu T, Van LL, Bui TQ (2020) Functionally graded curved Timoshenko microbeams: a numerical study using IGA and modified couple stress theory. Compos Struct 254:112841. https://doi.org/10.1016/j.compstruct.2020.112841

    Article  Google Scholar 

  56. Yu TT, Yin S, Bui TQ, Hirose S (2015) A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates. Finite Elem Anal Des 96:1–10. https://doi.org/10.1016/j.finel.2014.11.003

    Article  Google Scholar 

  57. Bui TQ, Nguyen MN, Zhang C (2011) An efficient meshfree method for vibration analysis of laminated composite plates. Comput Mech 48:175–193. https://doi.org/10.1007/s00466-011-0591-8

    Article  MATH  Google Scholar 

  58. Arshid E, Kiani A, Amir S (2019) Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface. Proc Inst Mech Eng Part L J Mater Des Appl 233:2140–2159. https://doi.org/10.1177/1464420719832626

    Article  Google Scholar 

  59. Amir S, Arshid E, Khoddami Maraghi Z (2020) Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium. Smart Struct Syst 25:581–592. https://doi.org/10.12989/sss.2020.25.5.581

    Article  Google Scholar 

  60. Khorasani M, Eyvazian A, Karbon M et al (2020) Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects. Smart Struct Syst 26:331–343. https://doi.org/10.12989/sss.2020.26.3.331

    Article  Google Scholar 

  61. Ghanati P, Safaei B (2019) Elastic buckling analysis of polygonal thin sheets under compression. Indian J Phys 93:47–52. https://doi.org/10.1007/s12648-018-1254-9

    Article  Google Scholar 

  62. Fattahi AM, Safaei B, Ahmed NA (2019) A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets. Eur Phys J Plus 134:1–13. https://doi.org/10.1140/epjp/i2019-12912-7

    Article  Google Scholar 

  63. Mohammadimehr M, Arshid E, Alhosseini SMAR et al (2019) Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Struct Eng Mech 70:683–702. https://doi.org/10.12989/sem.2019.70.6.683

    Article  Google Scholar 

  64. Liu B, Xing YF, Qatu MS, Ferreira AJM (2012) Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells. Compos Struct 94:484–493

    Article  Google Scholar 

  65. Detournay E, Cheng AH-D (1993) Fundamentals of poroelasticity. Anal Des Methods. https://doi.org/10.1016/B978-0-08-040615-2.50011-3

    Article  Google Scholar 

  66. Cao H, Xue R, Cai Q et al (2020) Design and experiment for dual-mass MEMS gyroscope sensing closed-loop system. IEEE Access 8:48074–48087. https://doi.org/10.1109/ACCESS.2020.2977223

    Article  Google Scholar 

Download references

Acknowledgements

The research is financially supported by the Ministry of Science and Technology of the People's Republic of China (Grant No. 2019YFE0112400) and the Taishan Scholar Priority Discipline Talent Group program funded by the Government of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A

The used stress resultants in Eqs. (31)–(35) are defined as follows:

$$\begin{gathered} \left\{ {\begin{array}{*{20}c} {N_{ii} } \\ {F_{ii} } \\ {G_{ii} } \\ \end{array} } \right\} = \int\limits_{z} {} \left( {C_{jj} \left[ {\begin{array}{*{20}c} 1 & {f(z)} & { - g(z)} \\ {f(z)} & {f(z)^{2} } & { - f(z)g(z)} \\ {g(z)} & {f(z)g(z)} & { - g(z)^{2} } \\ \end{array} } \right] + \frac{1}{R}C_{jj} \left[ {\begin{array}{*{20}c} 1 & {f(z)} & { - g(z)} \\ {f(z)} & {f(z)^{2} } & { - f(z)g(z)} \\ {g(z)} & {g(z)f(z)} & { - g(z)^{2} } \\ \end{array} \,\,\,\,\begin{array}{*{20}c} 1 \\ {f(z)} \\ {g(z)} \\ \end{array} } \right]} \right) \hfill \\ \left\{ {\begin{array}{*{20}c} {\frac{{\partial u_{0} }}{\partial x}} & {\frac{{\partial \phi_{x} }}{\partial x}} & {\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} & {\frac{{\partial v_{0} }}{\partial \theta }} & {\frac{{\partial \phi_{\theta } }}{\partial \theta }} & {\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}} & {w_{0} } \\ \end{array} } \right\}^{{\text{T}}} {\text{d}}z,\;i = x,\theta ;\,j = 1,2. \hfill \\ \end{gathered}$$
$$\left\{ {\begin{array}{*{20}c} {\alpha_{1} } \\ {\alpha_{2} } \\ {\alpha_{3} } \\ \end{array} } \right\} = \int\limits_{z} {} C_{55} \,\left[ {\begin{array}{*{20}c} {1 - g^{\prime}(z)} & {f^{\prime}(z)} \\ {f^{\prime}(z)(1 - g^{\prime}(z))} & {f^{\prime}(z)^{2} } \\ {g^{\prime}(z)(1 - g^{\prime}(z))} & {g^{\prime}(z)f^{\prime}(z)} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\frac{{\partial w_{0} }}{\partial x}} & {\phi_{x} } \\ \end{array} } \right\}^{{\text{T}}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {\alpha_{4} } \\ {\alpha_{5} } \\ {\alpha_{6} } \\ {\alpha_{7} } \\ {\alpha_{8} } \\ \end{array} } \right\} = \int\limits_{z} {} C_{44} \,\,\left[ {\begin{array}{*{20}c} {f^{\prime}(z) - f(z)} & {\frac{1}{R}(g(z) + \frac{1}{R}g(z) + 1)} & { - \frac{1}{R}} \\ {f(z)(f^{\prime}(z) - f(z))} & {\frac{f(z)}{R}(g(z) + \frac{1}{R}g(z) + 1)} & { - \frac{f(z)}{R}} \\ {g(z)(f^{\prime}(z) - f(z))} & {\frac{g(z)}{R}(g(z) + \frac{1}{R}g(z) + 1)} & { - \frac{g(z)}{R}} \\ {f^{\prime}(z)(f^{\prime}(z) - f(z))} & {\frac{{f^{\prime}(z)}}{R}(g(z) + \frac{1}{R}g(z) + 1)} & { - \frac{{f^{\prime}(z)}}{R}} \\ {g^{\prime}(z)(f^{\prime}(z) - f(z))} & {\frac{{g^{\prime}(z)}}{R}(g(z) + \frac{1}{R}g(z) + 1)} & { - \frac{{g^{\prime}(z)}}{R}} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\phi_{\theta } } & {\frac{{\partial w_{0} }}{\partial \theta }} & {v_{0} } \\ \end{array} } \right\}^{{\text{T}}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {\alpha_{9} } \\ {\alpha_{10} } \\ {\alpha_{11} } \\ \end{array} } \right\} = \int\limits_{z} {} C_{66} \left[ {\begin{array}{*{20}c} 1 & {f(z)} & { - \frac{2}{R}g(z)} & \frac{1}{R} & {\frac{1}{R}f(z)} \\ {f(z)} & {f(z)^{2} } & { - \frac{2}{R}f(z)g(z)} & {\frac{f(z)}{R}} & {\frac{1}{R}f(z)^{2} } \\ {g(z)} & {g(z)f(z)} & { - \frac{2}{R}g(z)^{2} } & {\frac{g(z)}{R}} & {\frac{1}{R}f(z)g(z)} \\ \end{array} } \right]\,\,\,\left\{ {\begin{array}{*{20}c} {\frac{{\partial v_{0} }}{\partial x}} & {\frac{{\partial \phi_{\theta } }}{\partial x}} & {\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }} & {\frac{{\partial u_{0} }}{\partial \theta }} & {\frac{{\partial \phi_{x} }}{\partial \theta }} \\ \end{array} } \right\}^{{\text{T}}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {\alpha_{12} } \\ {\alpha_{13} } \\ \end{array} } \right\} = \int\limits_{z} {} \eta H_{x}^{2} \left\{ {\begin{array}{*{20}c} 1 & {,\,\,\,\,f^{\prime}(z)} \\ \end{array} } \right\}\,{\text{d}}z,$$
$$\begin{gathered} J_{0} ,J_{1} ,J_{2} ,J_{3} ,J_{4} ,J_{5} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} \rho_{{\text{f}}} \left( z \right)(1,f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} )dz \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} \rho_{{\text{c}}} \left( z \right)(1,f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} )dz \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} \rho_{{\text{f}}} \left( z \right)(1,f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} )dz. \hfill \\ \end{gathered}$$

Appendix B

The arrays of matrices of Eq. (38a, 38b) are as follows:

$$K_{11} = C_{110} \Xi_{1}^{2} + \frac{{C_{660} \Xi_{2}^{2} }}{{R^{2} }},$$
$$K_{12} = \frac{1}{R}(C_{120} \Xi_{1} {\mkern 1mu} \Xi_{2} + C_{660} \Xi_{1} {\mkern 1mu} \Xi_{2} ),$$
$$K_{13} = - C_{112} \Xi_{1}^{3} - \frac{{C_{122} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{C_{120} \Xi_{1} }}{R} - 2{\mkern 1mu} \frac{{C_{662} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }},$$
$$K_{14} = C_{111} \Xi_{1}^{2} + \frac{{C_{661} \Xi_{2}^{2} }}{{R^{2} }},$$
$$K_{15} = \frac{{C_{121} \Xi_{1} \Xi_{2} }}{R} + \frac{{C_{661} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R},$$
$$K_{21} = \frac{{C_{120} \Xi_{1} \beta }}{R} + \frac{{C_{660} \Xi_{1} {\mkern 1mu} \beta }}{R},$$
$$K_{22} = \frac{{C_{220} \Xi_{2}^{2} }}{{R^{2} }} + Q_{660} \Xi_{1}^{2} ,$$
$$K_{23} = - \frac{{C_{122} \Xi_{1}^{2} \Xi_{2} }}{R} - \frac{{C_{222} \Xi_{2}^{3} }}{{R^{3} }} - \frac{{C_{220} \Xi_{2} }}{{R^{2} }} - 2{\mkern 1mu} \frac{{C_{662} \Xi_{1}^{2} \Xi_{2} }}{R},$$
$$K_{24} = \frac{{C_{121} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R} + \frac{{C_{661} \Xi_{1} \Xi_{2} }}{R},$$
$$K_{25} = \frac{{C_{221} \Xi_{2}^{2} }}{{R^{2} }} + C_{661} \Xi_{1}^{2} ,$$
$$K_{31} = - C_{112} \Xi_{1}^{3} - \frac{{C_{122} \Xi_{1} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{C_{120} \Xi_{1} }}{R} - 2{\mkern 1mu} \frac{{C_{662} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }},$$
$$K_{32} = - \frac{{C_{122} \Xi_{1}^{2} \Xi_{2} }}{R} - \frac{{C_{222} \Xi_{2}^{3} }}{{R^{3} }} - \frac{{C_{220} \Xi_{2} }}{{R^{2} }} - 2{\mkern 1mu} \frac{{C_{662} \Xi_{1}^{2} \Xi_{2} }}{R},$$
$$\begin{gathered} K_{33} = 2{\mkern 1mu} \frac{{C_{122} \Xi_{1}^{2} }}{R} + 4{\mkern 1mu} \frac{{C_{665} \Xi_{1}^{2} \Xi_{2}^{2} }}{{R^{2} }} + 2{\mkern 1mu} \frac{{C_{125} \Xi_{1}^{2} \Xi_{2}^{2} }}{{R^{2} }} + \frac{{C_{220} }}{{R^{2} }} + C_{115} \Xi_{1}^{4} + C_{550} \Xi_{1}^{2} - 2{\mkern 1mu} C_{559} \Xi_{1}^{2} \hfill \\ + C_{5511} \Xi_{1}^{2} + \frac{{C_{225} \Xi_{2}^{4} }}{{R^{4} }} + 2{\mkern 1mu} \frac{{C_{222} \Xi_{2}^{2} }}{{R^{3} }} + \frac{{C_{440} \Xi_{2}^{2} }}{{R^{2} }} - 2{\mkern 1mu} \frac{{C_{449} \Xi_{2}^{2} }}{{R^{2} }} + \frac{{C_{4411} \Xi_{2}^{2} }}{{R^{2} }} \hfill \\ + k_{2} \Xi_{1}^{2} + \frac{1}{{R^{2} }}k_{2} \Xi_{2}^{2} + k_{1} + N_{x}^{0} \Xi_{1}^{2} {}_{0} - \alpha_{12} \Xi_{1}^{2} - \frac{{\alpha_{12} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{\alpha_{13} \Xi_{2}^{2} }}{R}, \hfill \\ \end{gathered}$$
$$K_{34} = - 2{\mkern 1mu} \frac{{C_{664} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{C_{124} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - C_{114} \Xi_{1}^{3} + C_{556} \Xi_{1} - C_{5510} \Xi_{1} - \frac{{C_{121} \Xi_{1} }}{R},$$
$$K_{35} = - \frac{{C_{124} \Xi_{1}^{2} \Xi_{2} }}{R} - 2{\mkern 1mu} \frac{{C_{664} \Xi_{1}^{2} \Xi_{2} }}{R} - \frac{{C_{224} \Xi_{2}^{3} }}{{R^{3} }} - \frac{{C_{221} \Xi_{2} }}{{R^{2} }} + \frac{{C_{446} \Xi_{2} }}{R} - \frac{{C_{4410} \Xi_{2} }}{R}{ - }\frac{{\alpha_{13} \Xi_{2} }}{R},$$
$$K_{41} = C_{111} \Xi_{1}^{2} + \frac{{C_{661} \Xi_{2}^{2} }}{{R^{2} }},$$
$$K_{42} = \frac{{C_{121} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R} + \frac{{C_{661} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R},$$
$$K_{43} = - 2{\mkern 1mu} \frac{{C_{664} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{C_{124} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - C_{114} \Xi_{1}^{3} + C_{556} \Xi_{1} - C_{5510} \Xi_{1} - \frac{{C_{121} \Xi_{1} }}{R},$$
$$K_{44} = - 2{\mkern 1mu} \frac{{C_{664} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - \frac{{C_{124} \Xi_{1} {\mkern 1mu} \Xi_{2}^{2} }}{{R^{2} }} - C_{114} \Xi_{1}^{3} + C_{556} \Xi_{1} - C_{5510} \Xi_{1} - \frac{{C_{121} \Xi_{1} }}{R},$$
$$K_{45} = \frac{{C_{123} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R} + \frac{{C_{663} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R},$$
$$K_{51} = \frac{{C_{121} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R} + \frac{{C_{661} \Xi_{1} \Xi_{2} }}{R},$$
$$K_{52} = \frac{{C_{221} \Xi_{2}^{2} }}{{R^{2} }} + C_{661} \Xi_{1}^{2} ,$$
$$K_{53} = \frac{1}{R}\left( { - C_{124} \Xi_{1}^{2} \Xi_{2} - 2{\mkern 1mu} C_{664} \Xi_{1}^{2} \Xi_{2} - \frac{{C_{224} \Xi_{2}^{3} }}{{R^{2} }} - \frac{{C_{221} \Xi_{2} }}{R} + C_{446} \Xi_{2} - C_{4410} \Xi_{2} } \right),$$
$$K_{54} = \frac{{C_{123} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R} + \frac{{C_{663} \Xi_{1} {\mkern 1mu} \Xi_{2} }}{R},$$
$$K_{55} = \frac{{C_{223} \Xi_{2}^{2} }}{{R^{2} }} + C_{663} \Xi_{1}^{2} + C_{448} ,$$
$$\begin{gathered} M_{11} = J_{0} , \hfill \\ M_{12} = 0, \hfill \\ M_{13} = 0, \hfill \\ M_{14} = J_{1} , \hfill \\ M_{15} = 0, \hfill \\ \end{gathered}$$
$$\begin{gathered} M_{21} = 0, \hfill \\ M_{22} = J_{0} , \hfill \\ M_{23} = - J_{1} \Xi_{2} /R, \hfill \\ M_{24} = J_{1} , \hfill \\ M_{25} = 0, \hfill \\ \end{gathered}$$
$$\begin{gathered} M_{31} = - J_{2} \Xi_{1} , \hfill \\ M_{32} = - J_{1} \Xi_{2} /R, \hfill \\ M_{33} = J_{5} \Xi_{1}^{2} + J_{3} \Xi_{2}^{2} + J_{0} , \hfill \\ M_{34} = - J_{4} \Xi_{1} , \hfill \\ M_{35} = - J_{3} \Xi_{2} /R, \hfill \\ \end{gathered}$$
$$\begin{gathered} M_{41} = J_{1} , \hfill \\ M_{42} = 0, \hfill \\ M_{43} = - J_{4} \Xi_{1} , \hfill \\ M_{44} = J_{3} , \hfill \\ M_{45} = 0, \hfill \\ \end{gathered}$$
$$\begin{gathered} M_{51} = 0, \hfill \\ M_{52} = J_{1} , \hfill \\ M_{53} = - J_{3} \Xi_{2} /R, \hfill \\ M_{54} = 0, \hfill \\ M_{55} = J_{3} , \hfill \\ \end{gathered}$$

where

$$\begin{gathered} C_{110} ,C_{111} ,C_{112} ,C_{113} ,C_{114} ,C_{115} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{11}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{11}^{c} \left( z \right)(1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z \hfill \\ \, + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{11}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z,\,\,\, \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{120} ,C_{121} ,C_{122} ,C_{123} ,C_{124} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{12}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z)){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{12}^{c} \left( z \right)(1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z \hfill \\ \, + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{12}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z, \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{220} ,C_{221} ,C_{223} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{22}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),f(z)^{2} ){\text{d}}z\, + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{22}^{c} \left( z \right)(1,{\mkern 1mu} f(z),f(z)^{2} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{22}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),f(z)^{2} ){\text{d}}z, \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{440} ,C_{441} ,C_{443} ,C_{446} ,C_{447} ,C_{448} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{44}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),f(z)^{2} ,f(z)^{\prime},f(z)^{\prime}f(z),f(z)^{{\prime}{2}} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{44}^{c} \left( z \right)(\,1,{\mkern 1mu} f(z),f(z)^{2} ,f(z)^{\prime},f(z)^{\prime}f(z),f(z)^{{\prime}{2}} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{44}^{f} \left( z \right)(\,\,1,{\mkern 1mu} f(z),f(z)^{2} ,f(z)^{\prime},f(z)^{\prime}f(z),f(z)^{{\prime}{2}} ){\text{d}}z,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{550} ,C_{556} ,C_{558} ,C_{559} ,C_{5510} ,C_{5511} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{55}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z)^{\prime},f(z)^{{\prime}{2}} ,g(z)^{\prime},f(z)^{\prime}g(z)^{\prime},g(z)^{{\prime}{2}} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{55}^{c} \left( z \right)(\,\,1,{\mkern 1mu} f(z)^{\prime},f(z)^{{\prime}{2}} ,g(z)^{\prime},f(z)^{\prime}g(z)^{\prime},g(z)^{{\prime}{2}} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{55}^{f} \left( z \right)(\,\,\,1,{\mkern 1mu} f(z)^{\prime},f(z)^{{\prime}{2}} ,g(z)^{\prime},f(z)^{\prime}g(z)^{\prime},g(z)^{{\prime}{2}} ){\text{d}}z, \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{660} ,C_{661} ,C_{662} ,C_{663} ,C_{664} ,C_{665} = \int_{{\frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2} + h_{{\text{t}}} }} C_{66}^{f} \left( z \right)(\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2}}}^{{\frac{{h_{{\text{c}}} }}{2}}} C_{66}^{c} \left( z \right)(\,\,\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z \hfill \\ + \int_{{ - \frac{{h_{{\text{c}}} }}{2} - h_{{\text{b}}} }}^{{ - \frac{{h_{{\text{c}}} }}{2}}} C_{66}^{f} \left( z \right)(\,\,1,{\mkern 1mu} f(z),g(z),f(z)^{2} ,f(z)g(z),g(z)^{2} ){\text{d}}z. \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, L., Eyvazian, A. et al. Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG-GPLs patches exposed to longitudinal magnetic field. Engineering with Computers 38 (Suppl 3), 2447–2465 (2022). https://doi.org/10.1007/s00366-021-01361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01361-3

Keywords

Navigation