Skip to main content
Log in

Parametric stress field solutions for heterogeneous materials using proper generalized decomposition

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The proper generalized decomposition (PGD) method is developed for parametric solutions of full stress fields in heterogeneous materials. PGD decouples the multi-dimensional problem into a product of low-dimensional expansion with an enrichment process to approximate the field solutions. The configurations of inclusions (size, location, and material properties) and other model parameters can be included as extra-coordinates in PGD formulations to develop parametric field solutions. Numerical examples of 2D linear elastic heterogeneous materials with an inclusion varying in size, location, and stiffness properties are studied. Almost invisible differences on the full stress fields were observed between FEA and PGD approximate solutions, with the mean squared error (MSE) mostly within 0.25 for the whole stress field. The proposed PGD implementation for heterogeneous materials is able to predict the full stress fields including all localized stress concentration patterns with high accuracy. The parametric solutions from the PGD framework enable online computations of full stress fields for heterogeneous materials, providing a viable way for design optimization, uncertainty quantification, and many other real-time tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.J.: Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 23(9), 805–823 (1956). https://doi.org/10.2514/8.3664

    Article  MATH  Google Scholar 

  2. Meyer, D.G.: Fractional balanced reduction: model reduction via fractional representation. IEEE Trans. Autom. Control 35(12), 1341–1345 (1990). https://doi.org/10.1109/9.61011

    Article  MathSciNet  MATH  Google Scholar 

  3. Freund, R.W.: Model reduction methods based on krylov subspaces. Acta Numerica 12, 267–319 (2003). https://doi.org/10.1017/S0962492902000120

    Article  MathSciNet  MATH  Google Scholar 

  4. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  5. Chinesta, F., Huerta, A., Rozza, G., Willcox, K.: Model reduction methods. Encycl. Comput. Mech. Second Edit. (2017). https://doi.org/10.1002/9781119176817.ecm2110

    Article  Google Scholar 

  6. Ladevèze, P., Chamoin, L.: On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200(23–24), 2032–2047 (2011). https://doi.org/10.1016/j.cma.2011.02.019

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Z., Bessa, M., Liu, W.K.: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2015). https://doi.org/10.1016/j.cma.2016.04.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, J., Zhang, W.: The performance of proper orthogonal decomposition in discontinuous flows. Theor. Appl. Mech. Lett. 6(5), 236–243 (2016). https://doi.org/10.1016/j.taml.2016.08.008

    Article  Google Scholar 

  9. Lu, K., Zhang, K., Zhang, H., Gu, X., Jin, Y., Zhao, S., Fu, C., Yang, Y.: A review of model order reduction methods for large-scale structure systems. Shock Vib. (2021). https://doi.org/10.1155/2021/6631180

    Article  Google Scholar 

  10. Li, Z., Nie, Y., Cheng, G.: Mathematical foundations of fem-cluster based reduced order analysis method and a spectral analysis algorithm for improving the accuracy. Comput. Mech. 69(6), 1347–1363 (2022). https://doi.org/10.1007/s00466-022-02144-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Bakewell, H.P., Jr., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10(9), 1880–1889 (1967). https://doi.org/10.1063/1.1762382

    Article  Google Scholar 

  12. Sirovich, L.: Turbulence and the dynamics of coherent structures. i. coherent structures. Q. Appl. Math. 45(3), 561–571 (1987). https://doi.org/10.1090/qam/910462

    Article  MathSciNet  MATH  Google Scholar 

  13. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annual Rev. Fluid Mech. 25(1), 539–575 (1993). https://doi.org/10.1146/annurev.fl.25.010193.002543

    Article  MathSciNet  Google Scholar 

  14. Bamer, F., Bucher, C.: Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations. Acta Mech. 223(12), 2549–2563 (2012). https://doi.org/10.1007/s00707-012-0726-9

    Article  MATH  Google Scholar 

  15. Doshi, M., Ning, X.: A data-driven framework for buckling analysis of near-spherical composite shells under external pressure. J. Appl. Mech. (2021). https://doi.org/10.1115/1.4051332

    Article  Google Scholar 

  16. Abueidda, D.W., Koric, S., Sobh, N.A., Sehitoglu, H.: Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plast. 136, 102852 (2021). https://doi.org/10.1016/j.ijplas.2020.102852

    Article  Google Scholar 

  17. Abueidda, D.W., Koric, S., Al-Rub, R.A., Parrott, C.M., James, K.A., Sobh, N.A.: A deep learning energy method for hyperelasticity and viscoelasticity. European J. Mech. A/Solids 95, 104639 (2022). https://doi.org/10.1016/j.euromechsol.2022.104639

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, Z., Gao, H., Li, T.: SEM: a shallow energy method for finite deformation hyperelasticity problems. Acta Mech. 233(5), 1739–1755 (2022). https://doi.org/10.1007/s00707-022-03174-x

    Article  MATH  Google Scholar 

  19. Mohammadzadeh, S., Lejeune, E.: Predicting mechanically driven full-field quantities of interest with deep learning-based metamodels. Extreme Mech. Lett. 50, 101566 (2022). https://doi.org/10.1016/j.eml.2021.101566

    Article  Google Scholar 

  20. Yang, C., Kim, Y., Ryu, S., Gu, G.X.: Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020). https://doi.org/10.1016/j.matdes.2020.108509

    Article  Google Scholar 

  21. Yang, Z., Yu, C.-H., Buehler, M.J.: Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci. Adv. 7(15), 7416 (2021). https://doi.org/10.1126/sciadv.

  22. Swischuk, R., Mainini, L., Peherstorfer, B., Willcox, K.: Projection-based model reduction: formulations for physics-based machine learning. Comput. Fluids 179, 704–717 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Swischuk, R., Mainini, L., Peherstorfer, B., Willcox, K.: Projection-based model reduction: formulations for physics-based machine learning. Comput. Fluids 179, 704–717 (2019). https://doi.org/10.1016/j.compfluid.2018.07.021

  24. Lee, S., Kim, H., Lieu, Q.X., Lee, J.: CNN-based image recognition for topology optimization. Knowl. Based Syst. 198, 105887 (2020). https://doi.org/10.1016/j.knosys.2020.105887

    Article  Google Scholar 

  25. Shahane, S., Guleryuz, E., Abueidda, D.W., Lee, A., Liu, J., Yu, X., Chiu, R., Koric, S., Aluru, N.R., Ferreira, P.M.: Surrogate neural network model for sensitivity analysis and uncertainty quantification of the mechanical behavior in the optical lens-barrel assembly. Comput. Struct. 270, 106843 (2022). https://doi.org/10.1016/j.compstruc.2022.106843

    Article  Google Scholar 

  26. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139(3), 153–176 (2006). https://doi.org/10.1016/j.jnnfm.2006.07.007

    Article  MATH  Google Scholar 

  27. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: part ii: transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144(2–3), 98–121 (2007). https://doi.org/10.1016/j.jnnfm.2007.03.009

    Article  MATH  Google Scholar 

  28. Ammar, A.: The proper generalized decomposition: a powerful tool for model reduction. Int. J. Mater. Form. 3(2), 89–102 (2010). https://doi.org/10.1007/s12289-009-0647-x

    Article  MathSciNet  Google Scholar 

  29. Chinesta, F., Ammar, A., Cueto, E.: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17(4), 327–350 (2010). https://doi.org/10.1007/s11831-010-9049-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011). https://doi.org/10.1007/s11831-011-9064-7

    Article  Google Scholar 

  31. Chinesta, F., Ammar, A., Leygue, A., Keunings, R.: An overview of the proper generalized decomposition with applications in computational rheology. J. Non-Newtonian Fluid Mech. 166(11), 578–592 (2011). https://doi.org/10.1016/j.jnnfm.2010.12.012

    Article  MATH  Google Scholar 

  32. Ammar, A., Chinesta, F., Cueto, E., Doblaré, M.: Proper generalized decomposition of time-multiscale models. Int. J. Numer. Methods Eng. 90(5), 569–596 (2012). https://doi.org/10.1002/nme.3331

    Article  MathSciNet  MATH  Google Scholar 

  33. Chinesta, F., Ladevèze, P. (eds.): Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications vol. 554. Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1794-1

  34. Cueto, E., Chinesta, F., Huerta, A.: Model order reduction based on proper orthogonal decomposition. In: Separated representations and PGD-based model reduction, pp. 1–26. Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1794-1_1

  35. Modesto, D., Zlotnik, S., Huerta, A.: Proper generalized decomposition for parameterized helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation. Comput. Methods Appl. Mech. Eng. 295, 127–149 (2015). https://doi.org/10.1016/j.cma.2015.03.026

    Article  MathSciNet  MATH  Google Scholar 

  36. González, D., Aguado, J.V., Cueto, E., Abisset-Chavanne, E., Chinesta, F.: kpca-based parametric solutions within the pgd framework. Arch. Comput. Methods Eng. 25(1), 69–86 (2018). https://doi.org/10.1007/s11831-016-9173-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., González, D., Alfaro, I., Ammar, A., Huerta, A.: Pgd-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1), 31–59 (2013). https://doi.org/10.1007/s11831-013-9080-x

    Article  MathSciNet  MATH  Google Scholar 

  38. Allier, P.-E., Chamoin, L., Ladevèze, P.: Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on constitutive relation error minimization. Adv. Model. Simul. Eng. Sci. 2(1), 1–25 (2015). https://doi.org/10.1186/s40323-015-0038-4

    Article  Google Scholar 

  39. Ibáñez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J.L., Chinesta, F.: A multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity (2018). https://doi.org/10.1155/2018/5608286

    Article  MATH  Google Scholar 

  40. Dumon, A., Allery, C., Ammar, A.: Proper generalized decomposition method for incompressible navier-stokes equations with a spectral discretization. Appl. Math. Comput. 219(15), 8145–8162 (2013). https://doi.org/10.1016/j.amc.2013.02.022

    Article  MathSciNet  MATH  Google Scholar 

  41. Niroomandi, S., Alfaro, I., González, D., Cueto, E., Chinesta, F.: Model order reduction in hyperelasticity: a proper generalized decomposition approach. Int. J. Numer. Methods Eng. 96(3), 129–149 (2013). https://doi.org/10.1002/nme.4531

    Article  MathSciNet  MATH  Google Scholar 

  42. Zou, X., Conti, M., Díez, P., Auricchio, F.: A nonintrusive proper generalized decomposition scheme with application in biomechanics. Int. J. Numer. Methods Eng. 113(2), 230–251 (2018). https://doi.org/10.1002/nme.5610

    Article  MathSciNet  Google Scholar 

  43. Garikapati, H., Zlotnik, S., Díez, P., Verhoosel, C.V., van Brummelen, E.H.: A proper generalized decomposition (pgd) approach to crack propagation in brittle materials: with application to random field material properties. Comput. Mech. 65(2), 451–473 (2020). https://doi.org/10.1007/s00466-019-01778-0

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, D., Zlotnik, S., Díez, P.: A numerical study on hydraulic fracturing problems via the proper generalized decomposition method. CMES Comput. Model. Eng. Sci. 122(2), 703–720 (2020). https://doi.org/10.32604/cmes.2020.08033

    Article  Google Scholar 

  45. Massarotti, N., Mauro, A., Trombetta, V.: Proper generalized decomposition for geothermal applications. Thermal Sci Eng. Prog. (2021). https://doi.org/10.1016/j.tsep.2021.100882

    Article  Google Scholar 

  46. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-6355-3

  47. Ostoja-Starzewski, M.: Microstructural randomness and scaling in mechanics of materials. Chapman and Hall/CRC, New York (2007). https://doi.org/10.1201/9781420010275

  48. Chinesta, F., Keunings, R., Leygue, A.: The proper generalized decomposition for advanced numerical simulations: a primer. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02865-1

  49. Zlotnik, S., Díez, P., Modesto, D., Huerta, A.: Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. Int. J. Numer. Methods Eng. 103(10), 737–758 (2015). https://doi.org/10.1002/nme.4909

    Article  MathSciNet  MATH  Google Scholar 

  50. Cueto, E., González, D., Alfaro, I.: Proper generalized decompositions: an introduction to computer implementation with matlab. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29994-5

  51. Chinesta, F., Cueto, E., Abisset-Chavanne, E., Duval, J.L., Khaldi, F.E.: Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data. Arch. Comput. Methods Eng. 27(1), 105–134 (2020). https://doi.org/10.1007/s11831-018-9301-4

    Article  MathSciNet  Google Scholar 

  52. Badías, A., González, D., Alfaro, I., Chinesta, F., Cueto, E.: Real-time interaction of virtual and physical objects in mixed reality applications. Int. J. Numer. Methods Eng. 121(17), 3849–3868 (2020). https://doi.org/10.1002/nme.6385

    Article  MathSciNet  Google Scholar 

  53. Simulia: ABAQUS User’s Manual. Dassault Systèmes Simulia Corp, Johnston, RI, United States (2020)

  54. Bergheau, J.-M., Zuchiatti, S., Roux, J.-C., Feulvarch, E., Tissot, S., Perrin, G.: The proper generalized decomposition as a space-time integrator for elastoplastic problems. Comptes Rendus Mecanique 344(11), 759–768 (2016). https://doi.org/10.1016/j.crme.2016.06.002

    Article  Google Scholar 

  55. Shirafkan, N., Bamer, F., Stoffel, M., Markert, B.: Quasistatic analysis of elastoplastic structures by the proper generalized decomposition in a space-time approach. Mech. Res. Commun. 104, 103500 (2020). https://doi.org/10.1016/j.mechrescom.2020.103500

    Article  Google Scholar 

  56. Sancarlos, A., Champaney, V., Duval, J.-L., Cueto, E., Chinesta, F.: PGD-based advanced nonlinear multiparametric regressions for constructing metamodels at the scarce-data limit. arXiv:2103.05358 [cs] (2021)

  57. Zhang, L., Lu, Y., Tang, S., Liu, W.K.: HiDeNN-TD: reduced-order hierarchical deep learning neural networks. Comput. Methods Appl. Mech. Eng. 389, 114414 (2022). https://doi.org/10.1016/j.cma.2021.114414

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the start-up funds and CSCDR seed funds at the University of Massachusetts Dartmouth. The work of the second author is supported by the UMass Dartmouth MUST ONR Project # S31320000049160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Heryudono, A., Huang, W. et al. Parametric stress field solutions for heterogeneous materials using proper generalized decomposition. Acta Mech 233, 5283–5297 (2022). https://doi.org/10.1007/s00707-022-03384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03384-3

Navigation