Skip to main content
Log in

Dynamic response of a graded cracked half-plane with embedded sources

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, an efficient boundary integral equation method is developed based on an analytically derived Green’s function for the graded half-plane with buried point sources. The problem under investigation is the dynamic field which develops in an elastic, isotropic, and graded half-plane with an embedded, inclined Griffith crack as it is enveloped by time-harmonic waves radiating from buried monopoles and dipoles. Following numerical verification, the methodology is used to perform a series of parametric studies to investigate the dependence of the displacement and stress concentration wave fields on the following key parameters: (a) the material gradient which exhibits a quadratic type of variation with depth; (b) the type and characteristics of the source; (c) the position and geometrical configuration of the embedded geological crack, and (d) the dynamic interaction phenomena between the propagating wave in the material, the crack, and the free surface of the geological continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dineva, P., Manolis, G., Wuttke, F.: Fundamental solutions in 3 D elastodynamics for the BEM: a review. Eng. Anal. Bound. Elem. 105, 47–69 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pan, E.: Green‘s functions for geophysics: a review. Rep. Prog. Phys. 82(106801), 1–52 (2019)

    MathSciNet  Google Scholar 

  3. Zhong, W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic Publishers, New York (2004)

    MATH  Google Scholar 

  4. Poursartip, B., Fathi, A., Tassoulas, J.: Large-scale simulation of seismic wave motion: a review. Soil Dyn. Earth Eng. 129, 105909 (2020)

    Article  Google Scholar 

  5. Haskell, N.A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43(1), 17–34 (1953)

    Article  Google Scholar 

  6. Thompson, W.: Transmission of elastic waves through a stratified soil medium. J. Appl. Phys. 21, 89–93 (1950)

    Article  MathSciNet  Google Scholar 

  7. Knopoff, L.: A matrix method for elastic wave problems. Bull. Seismol. Soc. Am. 54, 431–438 (1964)

    Article  Google Scholar 

  8. Kennett, B.L.N., Kerry, N.J.: Seismic waves in a stratified half-space. Geophys. J. R. Astron. Soc. 44, 557–583 (1979)

    Article  MATH  Google Scholar 

  9. Pao, Y.H., Gajewski, R.: The generalized ray theory and transient responses of layered elastic solidsa, Ch: 6. In: Mason, W.P., Thursto, R.N. (eds.): Physical Acoustic, vol. 13, pp. 184–266. Academic Press, Cambridge (1977)

  10. Kausel, E., Roësset, J.M.: Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. 71, 1743–1761 (1981)

    Article  Google Scholar 

  11. Apsel, R.J., Luco, E.: The Green’s functions for a layered half-space: part I. Bull. Seismol. Soc. Am. 73(4), 909–929 (1983)

    Article  Google Scholar 

  12. Apsel, R.J., Luco, E.: The Green’s functions for a layered half-space: part II. Bull. Seismol. Soc. Am. 73(4), 959–971 (1983)

    Article  Google Scholar 

  13. Bouchon, M.: A simple method to calculate Green’s functions for elastic layered media. Bull. Seismol. Soc. Am. 71, 959–971 (1981)

  14. Liu, H., Pan, E., Cai, Y.: General surface loading over layered transversely isotropic pavements with imperfect interfaces. Adv. Eng. Softw. 115, 268–282 (2018)

    Article  Google Scholar 

  15. Tan, E.L.: Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 119(1), 45–53 (2006)

    Article  Google Scholar 

  16. Komatitsch, D., Erlebacher, G., Göddeke, D., Michéa, D.: High-order finite-element seismic wave propagation modeling with MPIon a large GPU cluster. J. Comput. Phys. 229, 7692–7714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Santare, M.H., Thamburaj, P., Gazonas, G.A.: The use of graded finite elements in the study of elastic wave propagation in continuously nonhomogeneous materials. Int. J. Solids Struct. 40, 5621–5634 (2003)

    Article  MATH  Google Scholar 

  18. Michéa, D., Komatitsch, D.: Accelerating a 3 D finite-difference wave propagation code using GPU graphics cards. Geophys. J. Int. 182(1), 389–402 (2010)

    Google Scholar 

  19. Moczo, P., Kristek, J., Galis, M.: Simulation of planar free surface with near-surface lateral discontinuities in the finite-difference modeling of seismic motion. Bull. Seismol. Soc. Am. 94, 760–768 (2004)

    Article  Google Scholar 

  20. Dineva, P.S., Manolis, G.D., Rangelov, T.V.: Transient seismic wave propagation in a multi-layered cracked geological region. J. Sound Vib. 273(1–2), 1–32 (2004)

    Article  MATH  Google Scholar 

  21. Dineva, P.S., Manolis, G.D., Rangelov, T.V.: Site effects due to wave path inhomogeneity by BEM. Eng. Anal. Bound. Elem. 32, 1025–1036 (2008)

    Article  MATH  Google Scholar 

  22. Parvanova, S.L., Dineva, P.S., Manolis, G.D.: Elastic wave field in a half-plane with free surface relief, tunnels and multiple buried inclusions. Acta Mech. 225, 1843–1865 (2014)

    Article  MathSciNet  Google Scholar 

  23. Parvanova, S.L., Dineva, P.S., Manolis, G.D., Wuttke, F.: Seismic response of lined tunnels in the half-plane with surface topography. Bull. Earthq. Eng. 12, 981–1005 (2014)

    Article  Google Scholar 

  24. Fathi, A., Poursartip, B., Kallivokas, L.E.: Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media. Int. J. Numer. Methods Eng. 101(3), 165–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Manolis, G.D., Parvanova, S., Makra, K., Dineva, P.S.: Seismic response of buried metro tunnels by a hybrid FDM- BEM approach. Bull. Earthq. Eng. 13(7), 1953–1977 (2015)

    Article  Google Scholar 

  26. Parvanova, S.L., Vasilev, G., Dineva, P.S.: Hybrid modelling of multi-layered geological structure under seismic excitation. J. Seismol. 24(1), 183–202 (2020)

    Article  Google Scholar 

  27. Wuttke, F., Dineva, P., Schanz, T.: Seismic wave propagation in laterally inhomogeneous geological region via a new hybrid approach. J. Sound Vib. 330, 664–684 (2011)

    Article  Google Scholar 

  28. Alvarez-Rubio, S., Benito, J.J., Sanchez-Sesma, F.J., Alarco, E.: The direct boundary element method: 2 D site effects assessment on laterally varying layered media (methodology). Soil Dyn. Earthq. Eng. 24, 167–180 (2004)

  29. Alvarez-Rubio, S., Benito, J.J., Sanchez-Sesma, F.J., Alarco, E.: The use of direct boundary element method for gaining insight into complex seismic site responses. Comput. Struct. 83, 821–835 (2005)

    Article  Google Scholar 

  30. Chen, J.T., Lee, J.W., Wu, C.F., Chen, I.L.: SH-wave diffraction by a semi-circular hill revisited: a null-field boundary integral equation method using degenerate kernels. Soil Dyn. Earthq. Eng. 31, 729–736 (2011)

    Article  Google Scholar 

  31. Gatmiri, B., Arson, C., Nguyen, K.V.: Seismic site effects by an optimized 2 D BE/FE method I. Theory, numerical optimization and application to topographical irregularities. Soil Dyn. Earthq. Eng. 28, 632–645 (2008)

    Article  Google Scholar 

  32. Gatmiri, B., Arson, C., Nguyen, K.V.: Seismic site effects by an optimized 2 D BE/FE method II. Quantification of site effects in two-dimensional sedimentary valleys. Soil Dyn. Earthq. Eng. 28, 646–661 (2008)

    Article  Google Scholar 

  33. Todorovska, M.I., Lee, V.W.: Surface motion of shallow circular alluvial valleys for incident plane SHwaves-analytical solution. Soil Dyn. Earthq. Eng. 10(4), 192–200 (1991)

    Article  Google Scholar 

  34. Trifunac, M.D.: Scattering of plane SH waves by semi-cilindrical canyon. Earthq. Eng. Struct. Dyn. 1, 267–281 (1972)

    Article  Google Scholar 

  35. Hall, L., Lee, V.W., Liang, J.: Anti-plane (SH) waves diffraction by an underground semi-circular cavity: analytical solution. Earthq. Eng. Eng. Vib. 9(3), 385–396 (2010)

    Article  Google Scholar 

  36. Lee, V.W., Manoogian, M.E.: Surface motion above an arbitrary shape under-ground cavity for incident SH waves. J. Eur. Earthq. Eng. 7(1), 3–11 (1995)

    Google Scholar 

  37. Lee, V.W., Sherif, R.I.: Diffraction around circular canyon in elastic wedge space by plane SH waves. ASCE J. Eng. Mech. 122, 539–544 (1996)

    Article  Google Scholar 

  38. Wang, G., Liu, D.: Scattering of SH-wave by multiple circular cavities in half space. Earthq. Eng. Eng. Vib. 1(1), 36–44 (2002)

    Article  Google Scholar 

  39. Fontara, I.K., Dineva, P.S., Manolis, G.D., Wuttke, F.: Numerical simulation of seismic wave field in graded geological media containing multiple cavities. Geophys. J. Int. 206(2), 921–640 (2016)

    Article  Google Scholar 

  40. Lee, V.W., Trifunac, M.D.: Response of tunnels to incident SH waves. ASCE J. Eng. Mech. 105, 643–659 (1970)

    Google Scholar 

  41. Lee, V.W., Chen, S., Hsu, I.R.: Anti-plane diffraction from canyon above subsurface unlined tunnel. ASCE J. Eng. Mech. 125, 668–675 (1999)

    Article  Google Scholar 

  42. Lee, V.W., Hao, L., Liang, J.: Diffraction of anti-plane SH-waves by a semi-circular cylindrical hill with an inside concentric semi-circular tunnel. Earthq. Eng. Eng. Vib. 3(2), 249–262 (2004)

    Article  Google Scholar 

  43. Liang, J., Luo, H., Lee, V.W.: Scattering of plane SH waves by a circular-arc hill with a circular tunnel. Acta Seismol. Sin. 17(5), 549–563 (2004)

    Article  Google Scholar 

  44. Liang, J., Ba, Z., Lee, V.W.: Scattering of plane P-waves around a cavity in poroelastic half-space: II. Numer. Results Earthq. Eng. Eng. Vib. 27(1), 7–11 (2007)

    Google Scholar 

  45. Manoogian, M.: Scattering and diffraction of SH-waves above an arbitrarily shaped tunnel. ISET J. Earthq. Technol. 37(1–3), 11–26 (2000)

    Google Scholar 

  46. Vasilev, G., Parvanova, S., Dineva, P., Wuttke, F.: Soil-structure interaction using BEM- FEM coupling through ANSYS software package. Soil Dyn. Earthq. Eng. 70, 104–117 (2015)

    Article  Google Scholar 

  47. Dineva, P., Manolis, G.D.: Scattering of seismic waves by cracks in multi-layered geological regions: I. Mech. Model. Soil Dyn. Earthq. Eng. 21, 615–625 (2001)

    Article  Google Scholar 

  48. Dineva, P., Manolis, G.D.: Scattering of seismic waves by cracks in multi-layered geological regions: II. Numer. Results Soil Dyn. Earthq. Eng. 21, 627–694 (2001)

  49. Liu, E., Zhang, Z.J.: Numerical study of elastic wave scattering by distributed cracks or cavities using the boundary integral method. J. Comput. Acoust. 9(3), 1039–1054 (2001)

    Article  Google Scholar 

  50. Liu, E., Cramping, S., Hudson, J.A.: Diffraction of seismic wave by cracks with application to hydraulic fracturing. Geophysics 62(1), 253–265 (1997)

    Article  Google Scholar 

  51. Rodríguez-Castellanos, A., Luzón, F., Sánchez-Sesma, F.J.: Diffraction of seismic waves in an elastic, cracked halfplane using a boundary integral formulation. Soil Dyn. Earthq. Eng. 25, 827–837 (2005)

    Article  Google Scholar 

  52. Manolis, G.D., Dineva, P.S., Rangelov, T.V., Wuttke, F.: Seismic Wave Propagation in Non-homogeneous Elastic Media by Boundary Elements. Solid Mechanics and Its Applications, vol. 240. Springer, Cham (2017)

    MATH  Google Scholar 

  53. Beskou, N.D.: Dynamic analysis of an elastic plate on a cross-anisotropic and continuously nonhomogeneous viscoelastic half-plane under a moving load. Acta Mech. 231, 1567–1585 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Beskou, N.D., Muho, E.V., Chassiakos, A.P.: Simplified models for determining the response of an isotropic, continuously nonhomogeneous half-plane to a moving distributed line load. Acta Mech. 231, 47–69 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Muho, E.V.: Dynamic response of an elastic plate on a transversely isotropic viscoelastic half-space with variable with depth moduli to a rectangular moving load. Soil Dyn. Earthq. Eng. 139(106330), 1–18 (2020)

    Google Scholar 

  56. Muho, E.V., Beskou, N.D.: Dynamic response of an isotropic elastic half-plane with shear modulus varying with depth to a load moving on its surface. Transp. Geotech. 20(100248), 1–15 (2019)

    Google Scholar 

  57. Dineva, P.S., Manolis, G.D., Rangelov, T.V.: Sub-surface crack in inhomogeneous half-plane: wave scattering phenomena by BEM. Eng. Anal. Bound. Elem. 30(5), 350–362 (2006)

    Article  MATH  Google Scholar 

  58. Manolis, G.D., Dineva, P.S., Rangelov, T.V.: Wave scattering by cracks in inhomogeneous continua using BIEM. Int. J. Solids Struct. 41, 3905–3927 (2004)

    Article  MATH  Google Scholar 

  59. Dineva, P.S., Rangelov, T.V., Manolis, G.D.: Elastic wave propagation in a class of cracked functionally graded materials by BIEM. Comput. Mech. 39(3), 293–308 (2007)

    Article  MATH  Google Scholar 

  60. Eischen, J.W.: Fracture of nonhomogeneous materials. Int. J. Fract. 34, 3–22 (1987)

    Article  Google Scholar 

  61. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5, 753–770 (1995)

    Article  Google Scholar 

  62. Konda, N., Erdogan, F.: The mixed-mode crack problem in a nonhomogeous elastic plane. Eng. Fract. Mech. 47, 533–545 (1994)

    Article  Google Scholar 

  63. Sladek, J., Sladek, V., Zhang, C., Solek, P., Pan, E.: Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids. Int. J. Fract. 145, 313–326 (2007)

    Article  MATH  Google Scholar 

  64. Xiao, S., Yue, Z.Q., Xiao, H.: Dual boundary element method for analyzing three-dimensional cracks in layered and graded halfspaces. Geophys. J. Int. 104, 135–147 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Kausel, E.: Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  66. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. Physics 7(5), 195–202 (1936)

    Article  MATH  Google Scholar 

  67. Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton (1998)

    MATH  Google Scholar 

  68. Pan, L., Rizzo, F., Martin, P.A.: Some efficient boundary integral strategies for time-harmonic wave problems in an elastic halfspace. Comput. Methods. Appl. Mech. Eng. 164, 207–221 (1998)

    Article  MATH  Google Scholar 

  69. Lin, W., Keer, L., Achenbach, J.: Dynamic stress intensity factors for an inclined subsurface crack. ASME J. Appl. Mech. 51, 773–779 (1984)

    Article  Google Scholar 

  70. Mathematica 6.0 for MS Windows. Wolfram Research, Inc., Champaign (2007)

  71. Dineva, P., Gross, D., Müller, R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials: Solutions of Time-Harmonic Problems via BIEM. Solid Mechanics and: Its Applications, vol. 212. Springer, Cham (2014)

  72. Rangelov, T.V., Dineva, P.S., Manolis, G.D.: BIEM analysis of a graded nano-cracked elastic half-plane under time-harmonic waves. ZAMM Z. Angew. Math. Mech. 100(e202000021), 1–25 (2020). https://doi.org/10.1002/zamm.202000021

    Article  MathSciNet  Google Scholar 

  73. Rangelov, T.V., Manolis, G.D.: Time-harmonic elastodynamic Green’s function for the half-plane modeled by a restricted inhomogeneity of quadratic type. J. Mech. Mater. Struet. 5(6), 909–924 (2010)

  74. Manolis, G.D., Shaw, R.P.: Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24, 59–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  75. Eringen, A.C., Suhubi, E.S.: Elasto-Dynamics: Linear Theory, vol. 2. Academic Press, New York (1975)

  76. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Academic Press, New York (1965)

    Google Scholar 

  77. Kobayashi, S.: Some problems of the boundary integral equation method in elastodynamics. In: Brebbia, C.A., Futagami, T., Tanaka, M. (eds.): Boundary Elements V, pp. 775–784. Springer, Berlin (1983)

Download references

Acknowledgements

The second and third authors were partially supported by the Grant No. BG05M2OP001–1.001–0003, financed by the Science and Education for Smart Growth Operational Program (2014–2020) in Bulgaria and co-financed by the European Union by the European Structural and Investment Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko V. Rangelov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Half-plane monopole and dipole Green’s functions

Appendix: Half-plane monopole and dipole Green’s functions

For completeness purposes, we present here the derivation of Green’s functions in the half-plane with point force and moment sources.

Recall that the inhomogeneity function is \(h(x)=(ax_2+1)^2\), \(a\le 0\), defined in \(R^2_-=\{x_2<0\}\), the stiffness tensor is \(C_{jkpq}(x)=\mu (x)(\delta _{jk}\delta _{pq}+\delta _{jp}\delta _{kq}+\delta _{jq}\delta _{kp})\), \(\mu (x)=\mu _0h(x)\), Poisson’s ratio is fixed at a value of \(\nu =0.25\), and density \(\rho (x)=\rho _0h(x)\)

We now expand the earlier derivation given in [73] for Green’s function of a half-plane with a point force source. Consider the dynamic equilibrium equation and boundary conditions in the half-plane \(R^2_-\). We denote Green’s function as \(G=G^0(x,\xi ,\omega )\) if \(e_0=1, e_s=0\) and \(G=G^s(x,\xi ,\omega )\) if \(e_0=0, e_s=1, s=1,2\) satisfying the equation

$$\begin{aligned} L^{a}(G)=(C_{ikpq}(x)G_{ip,q})_{,j}+\rho (x)\omega ^2G_{jk} =-(e_0\delta (x-\xi )+e_s\delta _{,s}(x-\xi ))\varepsilon _{jk}, \end{aligned}$$
(A.1)

and boundary conditions with

$$\begin{aligned} T^{a}_{ij}(G)= C_{i2pq}G_{jp,q}=0, \hbox { on } x_2=0, \ \ G\rightarrow 0, \hbox { for } x_2\rightarrow -\infty . \end{aligned}$$
(A.2)

In the above, \(x, \xi \in R^2_{-}\), \(\varepsilon =\varepsilon _{jk}\) is the unit tensor, \(\delta \) is Dirac’s delta function, and Green’s tensor G satisfies the Sommerfeld’s radiation condition along lines parallel to \(\{x_2=0\}\). The Green’s function with upper index 0 corresponds to the case of a point force source, while with upper index s corresponds the case of sources of the dipoles type.

For example, in reference to the case of Eq. (2), \(u_i=G^0_{ij}f_{0j}+G^s_{ij}f_{sj}\).

Let the matrix-valued function u be a solution of Eq. (A.1), i.e.,

$$\begin{aligned} L^{a}(u)=-(e_)\delta (x-\xi )+e_s\delta _{,s}(x-\xi ))\varepsilon , \ \ \hbox {for} \ \ x, \xi \in R^2_{-}, \end{aligned}$$

while w is a smooth matrix-valued function introduced so that the traction-free surface boundary condition can be satisfied,

$$\begin{aligned}&L^{a}(w)=0, \ \ \hbox {for} \ \ x, \xi \in R^2_{-}, \end{aligned}$$
(A.3)
$$\begin{aligned}&T^{a}(w)=-T^{a}(u), \ \ \hbox {on} \ \ x_2=0. \end{aligned}$$
(A.4)

Here, superscript a in the operators corresponds to the degree of inhomogeneity. The problem under consideration is linear, so by using superposition principle, the complete Green’s function is simply \(G=u+w\).

The fundamental solution u can be expressed as in [74] in the following form in order to transform the partial differential equation (A.1) with variable coefficients to one with constant coefficients,

$$\begin{aligned} u(x,\xi ,\omega )=h^{-1/2}(\xi )U(x,\xi ,\omega )h^{-1/2}(x). \end{aligned}$$
(A.5)

Here U is a solution for the corresponding homogeneous material case

$$\begin{aligned} L^0(U)=-(\mathbf {f_0}\delta (x-\xi )+\mathbf {f_s}\delta _{,s}(x-\xi ))\varepsilon , \ \ \hbox {with}\ \ x,\xi \in R^2. \end{aligned}$$

The matrix-valued function \(U=e_0U^0+e_1U^1+e_2U^2\) in \(R^2\) corresponding to the homogeneous case is available in [75] as

$$\begin{aligned}&U^0_{jk}=\frac{i}{4\mu _0} \left[ \delta _{jk}H^{(1)}_0(k_2r)\right. \left. +\frac{1}{k^2_2}\partial ^2_{jk}\left( H^{(1)}_0(k_2r)-H^{(1)}_0(k_1r)\right) \right] , \hbox { if } \mathbf {f_0}=1, \mathbf {f_s}=0, \end{aligned}$$
(A.6)
$$\begin{aligned}&U^s_{jk,s}=\frac{i}{4\mu _0} \left[ \delta _{jk}H^{(1)}_0(k_2r)\right. \left. +\frac{1}{k^2_2}\partial ^2_{jk}\left( H^{(1)}_0(k_2r)-H^{(1)}_0(k_1r)\right) \right] _{,s}, \hbox { if } \mathbf {f_0}=0, \mathbf {f_s}=1. \end{aligned}$$
(A.7)

In the above, \(r=\sqrt{(x_1-\xi _1)^2+(x_2-\xi _2)^2}\), \(k_1=\sqrt{\frac{\rho _0}{3\mu _0}}\omega \), and \(k_2=\sqrt{\frac{\rho _0}{\mu _0}}\omega \) are wavenumbers, and \(H^{(1)}_0(z)\) is the Bessel function of third kind (or Hankel function), zero order (see [76]).

A general solution \(w^s\) of Eq. (A.3) is in the form

$$\begin{aligned} w^s(x,\xi ,\omega )=h^{-1/2}(x)W^s(x,\xi ,\omega ),\quad s=0,1,2, \end{aligned}$$

where \(W^s=\{W^s_{jk}\}\) is defined by the inverse Fourier transform with respect to \(\phi \) as

$$\begin{aligned} W^s_{jk}=\frac{1}{2\pi }\int _RK^s_{jk}e^{i\phi x_1}\hbox {d}\phi , \end{aligned}$$

with a kernel function \(K^s_{jk}\) depending on \(e^{\beta _j x_2}\), \(\phi , \omega , a\), and parameter \(\beta _j=\sqrt{\phi ^2-k_j^2}\).

The kernel matrix function \({K^s_{jk}}\) is found in the form \(K={K^s_{jk}}=\sum ^2_{m=1}C^{ks}_m\nu ^m_je^{\beta _mx_2}\), and constants \(C^{ks}_m\) will be determined from the boundary condition (A.4), where

$$\begin{aligned} \nu ^1=\left( \begin{array}{l}\phi \\ -i\beta _1\end{array}\right) , \nu ^2=\left( \begin{array}{l} i\beta _2 \\ \phi \end{array}\right) . \end{aligned}$$

The traction field corresponding to the displacement field \(w^s\) on \(x_2=0\) is

$$\begin{aligned} \begin{array}{l} T^s_{1k}=\frac{1}{2\pi }\displaystyle \int \limits _R\mu _0\left[ \phi (-a+2\beta _1)C^{ks}_1\right. \left. +i(-a\beta _2+2\phi ^2-k^2_2)C^{ks}_2\right] e^{i\phi x_1}\hbox {d}\phi , \\ \\ T^s_{2k}=\frac{1}{2\pi }\displaystyle \int \limits _R\mu _0\left[ i(3a\beta _1-2\phi ^2+k^2_2)C^{ks}_1\right. \left. +\phi (-3a+2\beta _2)C^{ks}_2\right] e^{i\phi x_1}\hbox {d}\phi . \end{array} \end{aligned}$$
(A.8)

Employing Eqs. (A.5)–(A.7) for u and for U, respectively, we obtain

$$\begin{aligned} T^a_{jk}(u^s)=\frac{i}{2\pi }\int _RD^s_{jk}e^{i\phi x_1}\hbox {d}\phi , \end{aligned}$$
(A.9)

and the matrix components \(D^s_{jk}\) are given as follows:

$$\begin{aligned}&\begin{array}{l} D^0_{11}=\frac{h^{-1/2}(\xi )}{2k^2_2} \left[ \left( -a\beta _2-2\phi ^2+k^2_2\right) e^{\xi _2\beta _2}+\phi ^2\left( \frac{a}{\beta _1}+2\right) e^{\xi _2\beta _1}\right] , \\ D^0_{21}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2\beta _1}\left[ \beta _1\left( -3a-2\beta _2\right) e^{\xi _2\beta _2}\right. \left. +\left( 3a\beta _1+2\phi ^2-k^2_2\right) e^{\xi _2\beta _1}\right] , \\ D^0_{12}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2\beta _2}\left[ \left( -a\beta _2-2\phi ^2+k^2_2\right) e^{\xi _2\beta _2}\right. \left. +\beta _2\left( a+2\beta _1\right) e^{\xi _2\beta _1}\right] , \\ D^0_{22}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2}\left[ \phi ^2\left( \frac{3a}{\beta _2}+2\right) e^{\xi _2\beta _2}+\left( -3a\beta _1-2\phi ^2+k^2_2\right) e^{\xi _2\beta _1}\right] . \end{array} \\&\begin{array}{l} \displaystyle D^1_{11}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2} \left[ \left( \frac{-a}{\beta _2}(k_2^2-\phi ^2)+k^2_2-2\phi ^2\right) e^{\xi _2\beta _2}\right. \left. +\left( \frac{-a\phi ^2}{\beta _1}+2\phi ^2\right) e^{\xi _2\beta _1}\right] , \\ D^1_{21}=\frac{-\phi ^2 h^{-1/2}(\xi )}{2k^2_2}\left[ \left( -3a+3\beta _2+i\phi \right) e^{\xi _2\beta _2}+\left( 3a-i\phi -3\beta _1\right) e^{\xi _2\beta _1}\right] , \\ D^1_{12}=\frac{-\phi ^2 h^{-1/2}(\xi )}{2k^2_2}\left[ \left( -a+2\beta _2+\frac{k^2_2}{\beta _2}\right) e^{\xi _2\beta _2}+\left( a-2\beta _1\right) e^{\xi _2\beta _1}\right] , \\ D^1_{22}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2}\left[ \left( \frac{-3ak_2^2}{\beta _2}-3a\beta _2-\phi ^2+3(k_2^2+\beta _2^2)\right) e^{\xi _2\beta _2}+\left( 3a\beta _1-3\beta _1^2+\phi ^2\right) e^{\xi _2\beta _1}\right] . \end{array} \\&\begin{array}{l} D^2_{11}=\frac{ h^{-1/2}(\xi )}{2k^2_2} \left[ \left( -a(k_2^2-\phi ^2)+\beta _2(k_2^2-2\phi ^2)\right) e^{\xi _2\beta _2} +\left( -\phi ^2(a-2\beta _1)\right) e^{\xi _2\beta _1}\right] , \\ D^2_{21}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2}\left[ \left( -3a\beta _2-3\beta ^2_2+k_2^2-\phi ^2\right) e^{\xi _2\beta _2} +\left( 3\beta ^2_1+3a\beta _1-\phi ^2\right) e^{\xi _2\beta _1}\right] , \\ D^2_{12}=\frac{i\phi h^{-1/2}(\xi )}{2k^2_2}\left[ \left( -a\beta _2+k_2^2+2\beta _2^2\right) e^{\xi _2\beta _2} +\left( a\beta _1-2\beta _1^2\right) e^{\xi _2\beta _1}\right] , \\ D^2_{22}=\frac{h^{-1/2}(\xi )}{2k^2_2}\left[ \left( -3a(k_2^2+\beta ^2_2+\beta _2(3k_2^2-\phi ^2) +3\beta _2^3)\right) e^{\xi _2\beta _2}+\left( 3a\beta _1-3\beta _1^3+\phi ^2\beta _1\right) e^{\xi _2\beta _1}\right] . \end{array} \end{aligned}$$

Using the boundary condition (A.4) we can find \(C^{ks}_m=\Delta ^{a}_{mk}/\Delta ^{a}\), where the sub-determinants \(\Delta ^{a}_{mk}\) are given as:

$$\begin{aligned} \begin{array}{l} \Delta ^{as}_{11}=\left| \begin{array}{ll} -D^s_{11} &{} i\mu _0(-a\beta _2+2\phi ^2-k^2_2) \\ -D^s_{21} &{} \mu _0\phi (-3a+2\beta _2) \end{array}\right| ,\ \ \Delta ^{as}_{21}=\left| \begin{array}{ll} \mu _0\phi (-a+2\beta _1) &{} -D^s_{11} \\ i\mu _0(3a\beta _1-2\phi ^2+k^2_2) &{} -D^s_{21} \end{array}\right| , \\ \\ \Delta ^{as}_{12}=\left| \begin{array}{ll} \mu _0\phi (-a+2\beta _1) &{} -D^s_{12} \\ i\mu _0(3a\beta _1-2\phi ^2+k^2_2) &{} -D^s_{22} \end{array}\right| , \ \ \Delta ^{as}_{22}=\left| \begin{array}{ll} -D^s_{12} &{} i\mu _0(-a\beta _2+2\phi ^2-k^2_2) \\ -D^s_{22} &{} \mu _0\phi (-3a+2\beta _2) \end{array}\right| \end{array} \end{aligned}$$

and

$$\begin{aligned} \Delta ^{a}=\frac{\mu ^2_0}{4\pi ^2}\left| \begin{array}{ll} \phi (-a+2\beta _1) &{} i(-a\beta _2+2\phi ^2-k^2_2) \\ i(3a\beta _1-2\phi ^2+k^2_2) &{} \phi (-3a+2\beta _2) \end{array}\right| . \end{aligned}$$

Note that by setting the inhomogeneity parameter \(a=0\) we recover the homogeneous half-plane Green’s function for \(e_0=1, e_s=0\) given in [77].

For the case \(e_0=0, e_s\ne 0\) there are no published results even for the homogeneous case \(a=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manolis, G.D., Rangelov, T.V. & Dineva, P.S. Dynamic response of a graded cracked half-plane with embedded sources. Acta Mech 233, 3433–3452 (2022). https://doi.org/10.1007/s00707-022-03275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03275-7

Navigation