Skip to main content
Log in

Simplified models for determining the response of an isotropic, continuously nonhomogeneous half-plane to a moving distributed line load

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of a vertical distributed line load moving with constant speed on the surface of an isotropic half-plane with shear modulus varying continuously with depth has been very recently solved analytically by the authors in an exact manner. The same problem is solved here also analytically under various reasonably simplified assumptions that effectively reduce the coupled system of the two governing partial differential equations of motion into an uncoupled one. The assumptions are zero horizontal displacement, or zero horizontal normal stress, or zero horizontal normal stress plus zero derivative of the horizontal displacement with respect to the vertical coordinate. The method of complex Fourier series involving the horizontal coordinate and the time is used to reduce the uncoupled two partial differential equations to ordinary ones with variable coefficients, which are solved by the method of Frobenius in closed form. Comparison of the approximate solutions corresponding to the aforementioned simplified assumptions against the ‘exact’ solution by means of parametric studies serves to assess the degree of their accuracy for both cases of the shear modulus increasing and decreasing with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fryda, L.: Vibration of Solids and Structures Under Moving Loads. Thomas Telford Ltd, London (1999)

    Google Scholar 

  2. Beskou, N.D., Theodorakopoulos, D.D.: Dynamic effects of moving loads on road pavements: a review. Soil Dyn. Earthq. Eng. 31, 547–567 (2011)

    Article  Google Scholar 

  3. Cole, J.D., Huth, J.H.: Stresses produced in a half-plane by moving loads. J. Appl. Mech. ASME 25, 433–436 (1958)

    MathSciNet  MATH  Google Scholar 

  4. Ang, D.D.: Transient motion in a line load surface of an elastic half-space. Q. Appl. Math. 18, 251–256 (1960)

    Article  Google Scholar 

  5. Lefeuve-Mesgouez, G., Le Houedec, D., Peplow, A.T.: Ground vibration in the vicinity of a high-speed moving harmonic strip load. J. Sound Vib. 231(5), 1289–1309 (2000)

    Article  Google Scholar 

  6. Itou, S.: Stresses produced in an orthotropic half-plane under a moving line load. Int. J. Solids Struct. 100–101, 411–416 (2016)

    Article  Google Scholar 

  7. Beskou, N.D., Qian, J., Beskos, D.E.: Approximate solutions for the problem of a load moving on the surface of a half-plane. Acta Mech. 229, 1721–1739 (2018)

    Article  MathSciNet  Google Scholar 

  8. Sackman, J.L.: Uniformly moving load on a layered half-plane. J. Eng. Mech. Div. ASCE 87(4), 75–89 (1961)

    Google Scholar 

  9. De Barros, F.C.P., Luco, J.E.: Stresses and displacements in a layered half-space for a moving line load. Appl. Math. Comput. 67, 103–134 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Akbarov, S., Ilhan, N.: Dynamics of a system comprising an orthotropic layer and orthotropic half-plane under the action of an oscillating moving load. Int. J. Solids Struct. 46, 3873–3881 (2009)

    Article  Google Scholar 

  11. Ai, Z.Y., Ren, G.P.: Dynamic analysis of a transversely isotropic multilayered half- plane subjected to a moving load. Soil Dyn. Earthq. Eng. 83, 162–166 (2016)

    Article  Google Scholar 

  12. Achenbach, J.D., Keshava, S.P., Herrmann, G.: Moving load on a plate resting on an elastic half-space. J. Appl. Mech. ASME 34, 910–914 (1967)

    Article  Google Scholar 

  13. Beskou, N.D., Chen, Y., Qian, J.: Dynamic response of an elastic plate on a cross-anisotropic elastic half-plane to a load moving on its surface. Transp. Geotech. 14, 98–106 (2018)

    Article  Google Scholar 

  14. Ai, Z.Y., Xu, C.J., Ren, G.P.: Vibration of a pre-stressed plate on a transversely isotropic multilayered half-plane due to a moving load. Appl. Math. Model. 59, 728–738 (2018)

    Article  MathSciNet  Google Scholar 

  15. Muho, E.V., Beskou, N.D.: Dynamic response of an isotropic elastic half-plane with shear modulus varying with depth to a load moving on its surface. Transp. Geotech. 20, 100248 (2019). (in press)

    Article  Google Scholar 

  16. Gazetas, G.: Vibrational characteristics of soil deposits with variable wave velocity. Int. J. Numer. Anal. Methods Geomech. 6, 1–20 (1982)

    Article  Google Scholar 

  17. Vrettos, C.: In-plane vibrations of soil deposits with variable shear modulus: I surface waves. Int. J. Numer. Anal. Methods Geomech. 14, 209–222 (1990)

    Article  Google Scholar 

  18. Vrettos, C.: In-plane vibrations of soil deposits with variable shear modulus: II line load. Int. J. Numer. Anal. Methods Geomech. 14, 649–662 (1990)

    Article  Google Scholar 

  19. Vrettos, C.: Vertical and rocking impedances for rigid rectangular foundations on soils with bounded inhomogeneity. Earthq. Eng. Struct. Dyn. 28, 1525–1540 (1999)

    Article  Google Scholar 

  20. Muravskii, G.: On time harmonic problem for non-homogeneous elastic half-space with shear modulus limited at infinite depth. Eur. J. Mech. A Solids 16(2), 277–294 (1997)

    MathSciNet  Google Scholar 

  21. Guzina, B.B., Pak, R.Y.S.: Vertical vibration of a circular footing on a linear-wave-velocity half-space. Geotechnique 48(2), 159–168 (1998)

    Article  Google Scholar 

  22. Gazetas, G.: Machine foundations on deposits of soft clay overlain by a weathered crust. Geotechnique 31(3), 387–398 (1981)

    Article  Google Scholar 

  23. Towhata, I.: Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction. Soils Found. 36(1), 61–72 (1996)

    Article  Google Scholar 

  24. Vrettos, C.: Dynamic response of soil deposits to vertical SH waves for different rigidity depth-gradients. Soil Dyn. Earthq. Eng. 47, 41–50 (2013)

    Article  Google Scholar 

  25. Vrettos, C.: Rectangular footing on soil with depth-degrading stiffness: vertical and rocking impedances under conditional existence of surface waves. Soil Dyn. Earthq. Eng. 65, 294–302 (2014)

    Article  Google Scholar 

  26. Muravskii, G.B.: Mechanics of Non-Homogeneous and Anisotropic Foundations. Springer, Berlin (2001)

    Book  Google Scholar 

  27. Manolis, G.D., Shaw, R.P., Pavlou, S.: Elastic waves in nonhomogeneous media under 2D conditions: I. Fundamental solutions. Soil Dyn. Earthq. Eng. 18(1), 19–30 (1999)

    Article  Google Scholar 

  28. Siddharthan, R., Zafir, Z., Norris, G.M.: Moving load response of layered soil, I: formulation; II: verification and application. J. Eng. Mech. ASCE 119(10), 2052, 2072–2071, 2089 (1993)

    Google Scholar 

  29. Theodorakopoulos, D.D.: Dynamic analysis of a poroelastic half-plane soil medium under moving loads. Soil Dyn. Earthq. Eng. 23, 521–533 (2003)

    Article  Google Scholar 

  30. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, New York (1983)

    MATH  Google Scholar 

  31. De Hoop, A.T.: The moving load problem in soil dynamics-the vertical displacement approximation. Wave Motion 36, 335–346 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author (E. V. Muho) acknowledges with thanks the support provided to him by the National Key Research and Development Program of China (Grant No. 2017YFC1500701) and the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE15-B-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond V. Muho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

First simplified model results for the case of shear modulus decreasing with depth:

$$\begin{aligned}&\zeta =\varXi e^{-az},\quad \varXi =1-\left( {{G_\infty }/{G_0 }} \right) ,\quad {G_0 }/{G_\infty }=\delta >1,\nonumber \\&G\left( \zeta \right) =G_\infty \left( {1+\delta \zeta } \right) . \end{aligned}$$
(A.1)

Governing equations of motion

$$\begin{aligned}&\left( {1-k_v } \right) \left( {1+\delta \zeta } \right) W_n^{\prime } +k_v \delta W_n =0, \end{aligned}$$
(A.2)
$$\begin{aligned}&\zeta ^{2}\left( {1+\delta \zeta } \right) W_n^{{\prime }{\prime }} +\zeta \left( {1+2\delta \zeta } \right) W_n^{\prime } +k_v \left[ {\theta -\beta \left( {1+\delta \zeta } \right) } \right] W_n =0. \end{aligned}$$
(A.3)

Boundary conditions

$$\begin{aligned}&\left[ {-\left( {1+\delta \zeta } \right) \zeta \,W_n^{\prime } } \right] _{\zeta =\varXi } =-\frac{F_n k_v }{aG_\infty }, \end{aligned}$$
(A.4)
$$\begin{aligned}&\left[ {W_n } \right] _{\zeta =\varXi } =0. \end{aligned}$$
(A.5)

Solution of (A.3) satisfying (A.4):

$$\begin{aligned}&W_n \left( \zeta \right) ={A}\sum \limits _{r=0}^\infty a_r \zeta ^{r+m}, \end{aligned}$$
(A.6)
$$\begin{aligned}&m=\sqrt{k_v \left( {\beta -\theta } \right) },\,\,\,a_0 =1, \end{aligned}$$
(A.7)
$$\begin{aligned}&\left[ {\left( {r+m} \right) \left( {r+m-1} \right) +\left( {r+m} \right) +k_v \left( {\theta -\beta } \right) } \right] a_r =-\delta \left[ \left( {r+m-1} \right) \left( {r+m-2} \right) \nonumber \right. \\&\quad \left. +2\left( {r+m-1} \right) -k_v \beta \right] a_{r-1}, \end{aligned}$$
(A.8)
$$\begin{aligned}&A=-\frac{F_n k_v }{aG_\infty \left( {1+\delta \varXi } \right) \varXi \mathop \sum \nolimits _{r=0}^\infty \left( {r+m} \right) \,a_r \varXi ^{r+m-1}}, \end{aligned}$$
(A.9)
$$\begin{aligned}&\varSigma _{zz}^n =-\left( {1/{k_v }} \right) aG_\infty \left( {1+\delta \zeta } \right) \zeta W_n^{\prime }. \end{aligned}$$
(A.10)

Equations (A.2) and (A.5) are not satisfied, while condition (22)\(_{1}\) is satisfied since \(u=0\) everywhere.

Appendix B

Second simplified model results for the case of shear modulus decreasing with depth:

$$\begin{aligned}&\zeta =\varXi e^{-az},\quad \varXi =1-\left( {{G_\infty }/{G_0 }} \right) ,\quad {G_0 }/{G_\infty }=\delta >1, \nonumber \\&G\left( \zeta \right) =G_\infty \left( {1+\delta \zeta } \right) . \end{aligned}$$
(B.1)

Governing equations of motion:

$$\begin{aligned}&\left( {1+\delta \zeta } \right) \zeta ^{2}\,U_n^{{\prime }{\prime }} +\zeta \left( {1+2\delta \zeta } \right) \,U_n^{\prime } +\left[ {\frac{\beta \left( {1+\delta \zeta } \right) }{1-2k_v }+\theta } \right] U_n +i\gamma \delta \zeta W_n =0, \end{aligned}$$
(B.2)
$$\begin{aligned}&\left( {1+\delta \zeta } \right) \zeta ^{2}\left( {3-2k_v } \right) \,W_n^{{\prime }{\prime }} +\left[ {\left( {1+\delta \zeta } \right) \left( {3-2\,k_v } \right) \zeta +4\left( {1-k_v } \right) \delta \zeta ^{2}} \right] \,W_n^{\prime } +\left( {\theta -\beta -\delta \beta \zeta } \right) W_n =0.\nonumber \\ \end{aligned}$$
(B.3)

Boundary conditions:

$$\begin{aligned}&-4G_\infty \left( {1-k_v } \right) \left[ {\left( {1+\delta \zeta } \right) \alpha \zeta W_n^{\prime } } \right] _{\zeta =\varXi } =-F_n, \end{aligned}$$
(B.4)
$$\begin{aligned}&\left[ {\zeta \,U_n^{\prime } +i\gamma W_n } \right] _{\zeta =\varXi } =0. \end{aligned}$$
(B.5)

Solution of (B.3) satisfying (B.4):

$$\begin{aligned}&W_n \left( \zeta \right) =A\sum \limits _{r=0}^\infty a_r \zeta ^{r+m}, \end{aligned}$$
(B.6)
$$\begin{aligned}&m=\sqrt{\frac{\beta -\theta }{3-2k_v }},\quad a_0 =1, \end{aligned}$$
(B.7)
$$\begin{aligned}&\left[ {\left( {3-2k_v } \right) \left( {r+m} \right) \left( {r+m-1} \right) +\left( {3-2k_v } \right) \left( {r+m} \right) +\left( {\theta -\beta } \right) } \right] a_r \nonumber \\&\quad =-\delta \left[ {\left( {3-2k_v } \right) \left( {r+m-1} \right) \left( {r+m-2} \right) +\left( {7-6k_v } \right) \left( {r+m-1} \right) -\beta } \right] \,a_{r-1}, \end{aligned}$$
(B.8)
$$\begin{aligned}&A=\frac{F_n }{a\,G_\infty \left( {1-k_v } \right) \left[ {4\left( {1+\delta \varXi } \right) \varXi } \right] \mathop \sum \nolimits _{r=0}^\infty \left( {r+m} \right) \,a_r \varXi ^{r+m-1}}, \end{aligned}$$
(B.9)
$$\begin{aligned}&\varSigma _{zz}^n =-4a\left( {1-k_v } \right) G_\infty \zeta \left( {1+\delta \zeta } \right) W_n^{\prime }. \end{aligned}$$
(B.10)

Equations (B.2) and hence (22)\(_{1}\) are satisfied as in the increasing shear modulus with depth case. However, Eq. (B.5) may or may not be satisfied.

Appendix C

Third simplified model results for the case of shear modulus decreasing with depth:

$$\begin{aligned}&\zeta =\varXi e^{-az},\quad \varXi =1-\left( {{G_\infty }/{G_0 }} \right) ,\quad {G_0 }/{G_\infty }=\delta >1, \nonumber \\&G\left( \zeta \right) =G_\infty \left( {1+\delta \zeta } \right) . \end{aligned}$$
(C.1)

Governing equations of motion:

$$\begin{aligned}&i\gamma \delta \zeta \left( {1-2k_v } \right) W_n +\left[ {\beta \left( {1+\delta \zeta } \right) +\left( {1-2k_v } \right) \theta } \right] U_n =0, \end{aligned}$$
(C.2)
$$\begin{aligned}&2\left( {1+\delta \zeta } \right) \zeta ^{2}W_n^{{\prime }{\prime }} +2\zeta \left( {1+2\delta \zeta } \right) W_n^{\prime } +\frac{1}{2\left( {1-k_v } \right) }\left[ {\theta -\beta \left( {1+\delta \zeta } \right) } \right] W_n =0. \end{aligned}$$
(C.3)

Boundary conditions:

$$\begin{aligned}&-4G_\infty a\left( {1-k_v } \right) \left[ {\left( {1+\delta \zeta } \right) \zeta \,W_n^{\prime } } \right] _{\zeta =\varXi } =-F_n, \end{aligned}$$
(C.4)
$$\begin{aligned}&\left[ {W_n } \right] _{\zeta =\varXi } =0. \end{aligned}$$
(C.5)

Solution of (C.3) satisfying (C.4):

$$\begin{aligned}&W_n \left( \zeta \right) ={A}\sum \limits _{r=0}^\infty a_r \zeta ^{r+m}, \end{aligned}$$
(C.6)
$$\begin{aligned}&m=\frac{1}{2}\sqrt{\frac{\beta -\theta }{1-k_v }},\,\,a_0 =1, \end{aligned}$$
(C.7)
$$\begin{aligned}&\left[ {2\left( {r+m} \right) \left( {r+m-1} \right) +2\left( {r+m} \right) +\frac{1}{2\left( {1-k_v } \right) }\left( {\theta -\beta } \right) } \right] a_r \nonumber \\&\quad =-\delta \left[ {2\left( {r+m-1} \right) \left( {r+m-2} \right) +4\left( {r+m-1} \right) -\frac{1}{2\left( {1-k_v } \right) }\beta } \right] a_{r-1}, \end{aligned}$$
(C.8)
$$\begin{aligned}&A=\frac{F_n }{aG_\infty \left( {1-k_v } \right) 4\left( {1+\delta \varXi } \right) \varXi \mathop \sum \nolimits _{r=0}^\infty \left( {r+m} \right) \,a_r \varXi ^{r+m-1}}, \end{aligned}$$
(C.9)
$$\begin{aligned}&\varSigma _{zz}^n =-4a\left( {1-k_v } \right) G_\infty \zeta \left( {1+\delta \zeta } \right) W_n^{\prime }. \end{aligned}$$
(C.10)

Equation (C.2) and hence (22)\(_{1}\) are satisfied as in the increasing shear modulus with depth case. However, Eq. (C.5) is not satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beskou, N.D., Muho, E.V. & Chassiakos, A.P. Simplified models for determining the response of an isotropic, continuously nonhomogeneous half-plane to a moving distributed line load. Acta Mech 231, 47–69 (2020). https://doi.org/10.1007/s00707-019-02512-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02512-w

Navigation