Skip to main content
Log in

Finite element predictions on vibrations of laminated composite plates incorporating the random orientation, agglomeration, and waviness of carbon nanotubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present article, the vibration analysis of laminated composite plates strengthened with multi-walled carbon nanotubes (MWCNTs) is performed, employing the finite element method. Rule of mixtures and the Halpin–Tsai model are utilized to ascertain the elastic properties of the nanocomposite matrix. The effect of random orientation, the curved state, and the agglomeration of carbon nanotubes in the epoxy resin on mechanical properties is investigated. Classical lamination theory is also implemented to theoretically estimate the natural frequencies for validation purposes. Then, the natural frequencies of the laminated composite plates are determined by the numerical method for various parameters involved in the design process. The effect of MWCNTs’ inclusion on the natural frequencies of the carbon nanotube-based laminated plate, taking into account the reformed micromechanical Halpin–Tsai model, is finally investigated. The outcomes of the research are in compliance with experimental values and theoretical evidence available in the bibliography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Amplitude of a curved CNT

a, b :

Plate dimensions in x, y directions

D ij :

Bending stiffness coefficients

d :

Nanotube exterior diameter

E :

Elastic modulus

f R :

Random orientation factor of CNTs

f W :

Waviness factor of CNTs

f A :

Agglomeration factor of CNTs

f mn :

Natural frequency (Hz)

G :

Shear modulus

h :

Total plate thickness

[K]:

Global stiffness matrix

L :

Nanotube length

[M]:

Global mass matrix

m, n :

Mode shape integers of vibration

P :

Associated mechanical property

\({Q}_{ij}\) :

Reduced stiffness coefficients

\({\overline{Q} }_{ij}\) :

Transformed reduced stiffness coefficients

t :

Time

{u i}:

Mode shape vector

V :

Volume fraction

W :

Half-wavelength of a curved CNT

w :

Transverse displacement component

x, y :

Coordinates parallel to ply midplane

z :

Coordinate normal to ply midplane

α, β :

Variables of CNT agglomeration factor

γ xy :

Shear strain component

ε x , ε y :

Normal strain components

\(\theta\) :

Fiber orientation angle in ply (deg)

ξ :

Strengthening factor

ρ :

Mass density

σ x , σ y :

Normal stress components

τ xy :

Shear stress component

υ :

Poisson’s ratio

ω :

Natural circular frequency (rad s1)

\(\overline{\omega }\) :

Dimensionless natural circular frequency

1, 2, 3:

Property or variable referred to material axes

c:

Composite property

cnt:

Carbon nanotube property

f:

Fiber property

m:

Matrix property

m, n :

Mode shape integers of vibration

m-cnt:

Modified/hybrid matrix property

k:

Number of layer

References

  1. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20(9–10), 881–896 (1984). https://doi.org/10.1016/0020-7683(84)90056-8

    Article  MATH  Google Scholar 

  2. Putcha, N.S., Reddy, J.N.: Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. J. Sound Vib. 104(2), 285–300 (1986). https://doi.org/10.1016/0022-460X(86)90269-5

    Article  Google Scholar 

  3. Hanna, N.F., Leissa, A.W.: A higher order shear deformation theory for the vibration of thick plates. J. Sound Vib. 170(4), 545–555 (1994). https://doi.org/10.1006/jsvi.1994.1083

    Article  MATH  Google Scholar 

  4. Liew, K.M.: Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method. J. Sound Vib. 198(3), 343–360 (1996). https://doi.org/10.1006/jsvi.1996.0574

    Article  Google Scholar 

  5. Wang, J., Liew, K.M., Tan, M.J., Rajendran, S.: Analysis of rectangular laminated composite plates via FSDT meshless method. Int. J. Mech. Sci. 44(7), 1275–1293 (2002). https://doi.org/10.1016/S0020-7403(02)00057-7

    Article  MATH  Google Scholar 

  6. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. B. Eng. 44(1), 657–674 (2013). https://doi.org/10.1016/j.compositesb.2012.01.089

    Article  Google Scholar 

  7. Huu Quoc, T., Minh Tu, T., Van Tham, V.: Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refined plate theory. Materials 12, 3675 (2019). https://doi.org/10.3390/ma12223675

    Article  Google Scholar 

  8. Leissa, A.W., Kang, J.H.: Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. Int. J. Mech. Sci. 44, 1925–1945 (2002). https://doi.org/10.1016/S0020-7403(02)00069-3

    Article  MATH  Google Scholar 

  9. Kang, J.H., Shim, H.J.: Exact solutions for the free vibrations of rectangular plates having in-plane moments acting on two opposite simply supported edges. J. Sound Vib. 273(4–5), 933–948 (2004). https://doi.org/10.1016/S0022-460X(03)00566-2

    Article  Google Scholar 

  10. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T., Vu, T.V.: Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method. Compos. Struct. 94(5), 1677–1693 (2012). https://doi.org/10.1016/j.compstruct.2012.01.012

    Article  Google Scholar 

  11. Kostopoulos, V., Markopoulos, Y.P., Giannopoulos, G., Vlachos, D.E.: Finite element analysis of impact damage response of composite motorcycle safety helmets. Compos. B. Eng. 33(2), 99–107 (2002). https://doi.org/10.1016/S1359-8368(01)00066-X

    Article  Google Scholar 

  12. Amirpour, M., Bickerton, S., Calius, E., Mace, B.R., Das, R.: Numerical and experimental study on free vibration of 3D-printed polymeric functionally graded plates. Compos. Struct. 189, 192–205 (2018). https://doi.org/10.1016/j.compstruct.2018.01.056

    Article  Google Scholar 

  13. Gopalan, V., Suthenthiraveerappa, V., Pragasam, V.: Experimental and numerical investigation on the dynamic characteristics of thick laminated plant fiber-reinforced polymer composite plates. Arch. Appl. Mech. 89, 363–384 (2019). https://doi.org/10.1007/s00419-018-1473-8

    Article  Google Scholar 

  14. Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), 17–71 (2007). https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  15. Mohan, V.B., Lau, K.T., Hui, D., Bhattacharyya, D.: Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B. Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013

    Article  Google Scholar 

  16. Kumar, S.K., Krishnamoorti, R.: Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 1, 37–58 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-100856

    Article  Google Scholar 

  17. Camargo, P.H.C., Satyanarayana, K.G., Wypych, F.: Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009). https://doi.org/10.1590/s1516-14392009000100002

    Article  Google Scholar 

  18. Zhao, J., Wu, L., Zhan, C., Shao, Q., Guo, Z., Zhang, L.: Overview of polymer nanocomposites: computer simulation under-standing of physical properties. Polymer 133, 272–287 (2017). https://doi.org/10.1016/j.polymer.2017.10.035

    Article  Google Scholar 

  19. Siochi, E.J., Harrison, J.S.: Structural nanocomposites for aerospace applications. MRS Bull. 40, 829–835 (2015). https://doi.org/10.1557/mrs.2015.228

    Article  Google Scholar 

  20. Nehls, G.: HX5 thermoplastic nanocomposite presents an alternative to aluminum for space applications. Available online: https://www.compositesworld.com/news/hx5-thermoplastic-nanocomposite-presents-as-aluminum-component-alternative (accessed on Aug 18, 2020).

  21. Georgantzinos, S.K., Stamoulis, K.P., Markolefas, S.: Mechanical response of hybrid laminated polymer nanocomposite structures: a multilevel numerical analysis. SAE Int. J. Aerosp. 13, 01–13 (2020). https://doi.org/10.4271/01-13-02-0018

    Article  Google Scholar 

  22. Georgantzinos, S.K., Markolefas, S.I., Mavrommatis, S.A., Stamoulis, K.: Finite element modelling of carbon fiber carbon nanostructure polymer hybrid composite structures. MATEC Web Conf. 314, 02004 (2020). https://doi.org/10.1051/matecconf/202031402004

    Article  Google Scholar 

  23. Georgantzinos, S.K., Giannopoulos, G.I., Markolefas, S.I.: Vibration analysis of carbon fiber-graphene-reinforced hybrid polymer composites using finite element techniques. Materials 13(19), 4225 (2020). https://doi.org/10.3390/ma13194225

    Article  Google Scholar 

  24. Koo, J.: Electrical properties of polymer nanocomposites. In: Fundamentals, Properties, and Applications of Polymer Nanocomposites. Cambridge University Press, Cambridge, pp. 521–549 (2016). https://doi.org/10.1017/CBO9781139342766.012

  25. Sain, P.K., Goyal, R.K., Prasad, Y.V.S.S., Bhargava, A.K.: Electrical properties of single-walled/multi-walled carbon-nanotubes filled polycarbonate nanocomposites. J. Electron. Mater. 46, 458–466 (2017). https://doi.org/10.1007/s11664-016-4907-5

    Article  Google Scholar 

  26. Georgantzinos, S.K., Giannopoulos, G.I.: Thermomechanical buckling of single walled carbon nanotubes by a structural mechanics method. Diam. Relat. Mater. 80, 27–37 (2017). https://doi.org/10.1016/j.diamond.2017.10.005

    Article  Google Scholar 

  27. Georgantzinos, S.K.: A new finite element for an efficient mechanical analysis of graphene structures using computer aided design/computer aided engineering techniques. J. Comput. Theor. Nanosci. 14, 5347–5354 (2017). https://doi.org/10.1166/jctn.2017.6949

    Article  Google Scholar 

  28. Raza, M.A., Westwood, A., Brown, A., Hondow, N., Stirling, C.: Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13), 4269–4279 (2011). https://doi.org/10.1016/j.carbon.2011.06.002

    Article  Google Scholar 

  29. Psarras, G.C.: Nanographite-polymer composites. In: Sattler, K.D. (eds). Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, 1st ed. CRC Press, Boca Raton, FL, vol. 2, pp. 647–673 (2016). https://doi.org/10.1201/9781315371337

  30. Coleman, J.N., Khan, U., Blau, W.J., Gunk’o, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006). https://doi.org/10.1016/j.carbon.2006.02.038

    Article  Google Scholar 

  31. Vidya, Mandal, L., Verma, B., Patel, P.K.: Review on polymer nanocomposite for ballistic & aerospace applications. Mater. Today Proc. 26, 3161–3166 (2020). https://doi.org/10.1016/j.matpr.2020.02.652

    Article  Google Scholar 

  32. Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A.: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70(4), 553–563 (2010). https://doi.org/10.1016/j.compscitech.2009.11.023

    Article  Google Scholar 

  33. Lachman, N., Qian, H., Houllé, M., Amadou, J., Shaffer, M.S.P., Wagner, H.D.: Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. J. Mater. Sci. 48, 5590–5595 (2013). https://doi.org/10.1007/s10853-013-7353-2

    Article  Google Scholar 

  34. Rafiee, R., Ghorbanhosseini, A.: Stochastic multi-scale modeling of randomly grown CNTs on carbon fiber. Mech. Mater. 106, 1–7 (2017). https://doi.org/10.1016/j.mechmat.2017.01.001

    Article  Google Scholar 

  35. Rafiee, R., Sahraei, M.: Characterizing delamination toughness of laminated composites containing carbon nanotubes: experimental study and stochastic multi-scale modeling. Compos. Sci. Technol. 201, 108487 (2021). https://doi.org/10.1016/j.compscitech.2020.108487

    Article  Google Scholar 

  36. Shahmohammadi, M.A., Azhari, M., Salehipour, H., Civalek, Ö.: A novel composite model for vibration of thin-walled layered composite panels incorporating the agglomeration of CNTs. Aerosp. Sci. Technol. 116, 106897 (2021). https://doi.org/10.1016/j.ast.2021.106897

    Article  Google Scholar 

  37. Georgantzinos, S.K., Antoniou, P.A., Giannopoulos, G.I., Fatsis, A., Markolefas, S.I.: Design of laminated composite plates with carbon nanotube inclusions against buckling: waviness and agglomeration effects. Nanomaterials 11, 2261 (2021). https://doi.org/10.3390/nano11092261

    Article  Google Scholar 

  38. Ghasemi, A.R., Mohandes, M., Dimitri, R., Tornabene, F.: Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Compos. B Eng. 167, 700–716 (2019). https://doi.org/10.1016/j.compositesb.2019.03.028

    Article  Google Scholar 

  39. Dong, M., Zhang, H., Tzounis, L., Santagiuliana, G., Bilotti, E., Papageorgiou, D.G.: Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: a review. Carbon 185, 57–81 (2021). https://doi.org/10.1016/j.carbon.2021.09.009

    Article  Google Scholar 

  40. Hassanzadeh-Aghdam, M.K., Jamali, J.: A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites. Bull. Mater. Sci. 42, 117 (2019). https://doi.org/10.1007/s12034-019-1784-6

    Article  Google Scholar 

  41. Rafiee, R., Firouzbakht, V.: Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique. Mech. Mater 78, 74–84 (2014). https://doi.org/10.1016/j.mechmat.2014.07.021

    Article  Google Scholar 

  42. Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K.: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018). https://doi.org/10.1039/C8NR02278J

    Article  Google Scholar 

  43. Taş, H., Soykok, I.F.: Effects of carbon nanotube inclusion into the carbon fiber reinforced laminated composites on flexural stiffness: a numerical and theoretical study. Compos. Part B Eng. 159, 44–52 (2019). https://doi.org/10.1016/j.compositesb.2018.09.055

    Article  Google Scholar 

  44. Shokrieh, M.M., Kamali Shahri, S.M.: Modeling residual stresses in composite materials. In: Shokrieh, M.M. (eds.) Residual Stresses in Composite Materials, 1st ed. Woodhead Publishing Ltd., Amsterdam, p. 185 (2014). https://doi.org/10.1533/9780857098597.1.173

  45. Jones, R.M.: Mechanics of Composite Materials, 2nd ed. CRC Press, Boca Raton, pp. 71–77 & 198–200 (1999). https://doi.org/10.1201/9781498711067

  46. Vinson, J.R.: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials. Including Sandwich Construction, 1st ed., vol. 120. Springer, Netherlands, pp. 119, 222, 259 (2005). https://doi.org/10.1007/1-4020-3111-4

  47. Dey, P., Haldar, S., Sengupta, D., Sheikh, A.H.: An efficient plate element for the vibration of composite plates. Appl. Math. Model. 40(9–10), 5589–5604 (2016). https://doi.org/10.1016/j.apm.2016.01.021

    Article  MathSciNet  MATH  Google Scholar 

  48. Budynas, R.G., Nisbett, J.K., Shigley, J.E.: Shigley’s Mechanical Engineering Design, 9th edn., pp. 953–975. McGraw-Hill, New York (2011)

    Google Scholar 

  49. Omidi, M., Rokni, H.D.T., Milani, A.S., Seethaler, R.J., Arasteh, R.: Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11), 3218–3228 (2010). https://doi.org/10.1016/j.carbon.2010.05.007

    Article  Google Scholar 

  50. Rafiee, M., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  51. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates. In: Hinton, M.J., Kaddour, A.S., Soden, P.D. (eds.) Failure criteria in fibre-reinforced-polymer composites, 1st ed. Elsevier Ltd, Chapter 2.1, pp. 30–51 (2004). https://doi.org/10.1016/B978-008044475-8/50003-2.

  52. Rubel, R.I., Ali, H., Jafor, A., Alam, M.: Carbon nanotubes agglomeration in reinforced composites: a review. AIMS Mater. Sci. 6(5), 756–780 (2019). https://doi.org/10.3934/matersci.2019.5.756

    Article  Google Scholar 

  53. Shao, L.H., Luo, R.Y., Bai, S.L., Wang, J.: Prediction of effective moduli of carbon nanotube–reinforced composites with waviness and debonding. Compos. Struct. 87(3), 274–281 (2009). https://doi.org/10.1016/j.compstruct.2008.02.011

    Article  Google Scholar 

  54. Alian, A.R., Meguid, S.A.: Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites. Phys. Chem. Chem. Phys. 19, 4426–4434 (2017). https://doi.org/10.1039/C6CP07464B

    Article  Google Scholar 

  55. Rafiee, R.: Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013). https://doi.org/10.1016/j.compstruct.2012.10.028

    Article  Google Scholar 

  56. Li, C., Chou, T.W.: Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. Compos. Part A Appl. Sci. 40(10), 1580–1586 (2009). https://doi.org/10.1016/j.compositesa.2009.07.002

    Article  Google Scholar 

  57. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003). https://doi.org/10.1016/S0266-3538(03)00069-1

    Article  Google Scholar 

  58. Bradshaw, R.D., Fisher, F.T., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor. Compos. Sci. Technol. 63(11), 1705–1722 (2003). https://doi.org/10.1016/S0266-3538(03)00070-8

    Article  Google Scholar 

  59. Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J.: Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12, 2228–2267 (2020). https://doi.org/10.1039/C9NR06952F

    Article  Google Scholar 

  60. Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N.: Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Comput. Methods Appl. Mech. Engng. 194(39–41), 4265–4278 (2005). https://doi.org/10.1016/j.cma.2004.11.004

    Article  MATH  Google Scholar 

  61. Khdeir, A.A., Librescu, L.: Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II—buckling and free vibration. Compos. Struct. 9(4), 259–277 (1988). https://doi.org/10.1016/0263-8223(88)90048-7

    Article  Google Scholar 

  62. Noor, A.K.: Free vibrations of multilayered composite plates. AIAA J. 11(7), 1038–1039 (1973). https://doi.org/10.2514/3.6868

    Article  Google Scholar 

  63. Phan, N.D., Reddy, J.N.: Analysis of laminated composite plates using a higher-order shear deformation theory. Int. J. Numer. Methods Eng. 21, 2201–2219 (1985). https://doi.org/10.1002/nme.1620211207

    Article  MATH  Google Scholar 

  64. Liew, K.M., Huang, Y.Q., Reddy, J.N.: Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares. Comput. Methods Appl. Mech. Eng. 192(19), 2203–2222 (2003). https://doi.org/10.1016/S0045-7825(03)00238-X

    Article  MATH  Google Scholar 

  65. Liu, L., Chua, L.P., Ghista, D.N.: Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates. Compos. Struct. 78 (1), 58–69 (2007). https://doi.org/10.1016/j.compstruct.2005.08.010.

  66. Thai, H.T., Kim, S.E.: Free vibration of laminated composite plates using two variable refined plate theory. Int. J. Mech. Sci. 52(4), 626–633 (2010). https://doi.org/10.1016/j.ijmecsci.2010.01.002

    Article  Google Scholar 

  67. Reddy, J.N., Khdeir, A.A.: Buckling and vibration of laminated composite plates using various plate theories. AlAA J. 27(12), 1808–1817 (1989). https://doi.org/10.2514/3.10338

    Article  MathSciNet  MATH  Google Scholar 

  68. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., Tran-Cong, T.: Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Comput. Struct. 89(7–8), 612–625 (2011). https://doi.org/10.1016/j.compstruc.2011.01.005

    Article  Google Scholar 

  69. Cho, K.N., Bert, C.W., Striz, A.G.: Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J. Sound Vib. 145(3), 429–442 (1991). https://doi.org/10.1016/0022-460X(91)90112-W

    Article  Google Scholar 

  70. Reddy, J.N., Phan, N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vib. 98(2), 157–170 (1985). https://doi.org/10.1016/0022-460X(85)90383-9

    Article  MATH  Google Scholar 

  71. Wu, C.-P., Chen, W.-Y.: Vibration and stability of laminated plates based on a local high order plate theory. J. Sound Vib. 177(4), 503–520 (1994). https://doi.org/10.1006/jsvi.1994.1448

    Article  MATH  Google Scholar 

  72. Zhen, W., Wanji, C.: Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J. Sound Vib. 298(1–2), 333–349 (2006). https://doi.org/10.1016/j.jsv.2006.05.022

    Article  Google Scholar 

  73. Matsunaga, H.: Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48(4), 231–244 (2000). https://doi.org/10.1016/S0263-8223(99)00110-5

    Article  Google Scholar 

  74. Senthilnathan, N.R., Lim, S.P., Lee, K.H., Chow, S.T.: Vibration of laminated orthotropic plates using a simplified higher-order deformation theory. Compos. Struct. 10(3), 211–229 (1988). https://doi.org/10.1016/0263-8223(88)90020-7

    Article  Google Scholar 

  75. Sheikh, A.H., Haldar, S., Sengupta, D.: Free flexural vibration of composite plates in different situations using a high precision triangular element. J. Vib. Control 10(3), 371–386 (2004). https://doi.org/10.1177/1077546304033499

    Article  MATH  Google Scholar 

  76. Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios K. Georgantzinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgantzinos, S.K., Antoniou, P., Markolefas, S. et al. Finite element predictions on vibrations of laminated composite plates incorporating the random orientation, agglomeration, and waviness of carbon nanotubes. Acta Mech 233, 2031–2059 (2022). https://doi.org/10.1007/s00707-022-03179-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03179-6

Navigation