Skip to main content
Log in

Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Uncertainties caused by the deviation of functionally graded reinforcements from the ideal linear distribution form are unavoidable during the manufacturing process, and this can significantly influence the vibrational behavior of carbon-based nanocomposite plates. In this context, this work aims to carry out a detailed parametric study on the free vibration response of laminated composite plates made of multi-layer carbon-based nanocomposite plies, considering both linear and nonlinear distribution forms of the nano-reinforcements. Materials constituting the plies are nano-reinforcement-based carbon nanotubes (CNTs) embedded in a polymer matrix. The CNTs are assumed to be either uniformly distributed (UD) or functionally graded (FG) across the ply thickness. Two types of laminated plate arrangements are comparatively investigated. The effective material properties such as elastic modulus and mass density are derived using the extended rule of mixture, whereas the governing equations are obtained through the combination of the Lagrange equation of motion and the first-order shear deformation theory (FSDT). The natural frequencies of the carbon nanotube-reinforced composite (CNTRC) laminated plates are obtained using the finite element method. The accuracy of the present numerical model is validated by comparing our results with those published in the open literature. The obtained numerical results show that both the plate layout arrangement and how the CNT fillers are dispersed along the ply thickness have a remarkable influence on the CNTRC laminated plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J.: Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12, 2228–2267 (2020)

    Google Scholar 

  2. Mao, Y., He, Q., Zhao, X.: Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020)

    Google Scholar 

  3. Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput. Methods Appl. Mech. Eng. 193, 1773–1788 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Google Scholar 

  5. Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2394–2401 (2007)

    Google Scholar 

  6. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., Van Vuure, A.W., Gorbatikh, L., Moldenaers, P., Verpoest, I.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon N. Y. 47, 2914–2923 (2009)

    Google Scholar 

  7. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: Present and future commercial applications. Science 339, 535–539 (2013)

    Google Scholar 

  8. Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Google Scholar 

  9. Kim, M., Park, Y.-B., Okoli, O.I., Zhang, C.: Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 69, 335–342 (2009)

    Google Scholar 

  10. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Google Scholar 

  11. Kaseem, M., Hamad, K., Ko, Y.G.: Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur. Polym. J. 79, 36–62 (2016)

    Google Scholar 

  12. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Google Scholar 

  13. Liew, K.M., Pan, Z., Zhang, L.-W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Physics, Mech. Astron. 63, 234601 (2020)

    Google Scholar 

  14. Attia, M.A., Shanab, R.A.: On the dynamic response of bi-directional functionally graded nanobeams under moving harmonic load accounting for surface effect. Acta Mech. 233, 3291–3317 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Deshpande, G.A., Kulkarni, S.: Free vibration analysis of functionally graded plates under uniform and linear thermal environment. Acta Mech. 230, 1347–1354 (2019)

    MathSciNet  Google Scholar 

  16. Ecsedi, I.: Non-uniform torsion of functionally graded anisotropic bar of an elliptical cross section. Acta Mech. 231, 2947–2953 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Falsone, G., La Valle, G.: A homogenized theory for functionally graded Euler-Bernoulli and Timoshenko beams. Acta Mech. 230, 3511–3523 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Bourihane, O., Mhada, K., Sitli, Y.: New finite element model for the stability analysis of a functionally graded material thin plate under compressive loadings. Acta Mech. 231, 1587–1601 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Google Scholar 

  20. Wu, Z., Zhang, Y., Yao, G.: Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech. 231, 2497–2519 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Jeong, H., Cho, J.-R.: Study on the detailed and homogenized models for functionally graded carbon nanotube-reinforced composite beams. J. Mech. Sci. Technol. 35, 4085–4092 (2021)

    Google Scholar 

  22. Liu, Z., Wang, C., Duan, G., Tan, J.: Isogeometric analysis of functionally graded CNT-reinforced composite plates based on refined plate theory. J. Mech. Sci. Technol. 34, 3687–3700 (2020)

    Google Scholar 

  23. Civalek, O., Jalaei, M.H.: Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method. Acta Mech. 231, 2565–2587 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, L.W.: An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform. Eng. Anal. Bound. Elem. 77, 10–25 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput. Methods Appl. Mech. Eng. 298, 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Ansari, R., Torabi, J., Shakouri, A.H.: Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy. Aerosp. Sci. Technol. 60, 152–161 (2017)

    Google Scholar 

  27. Thai, C.H., Tran, T.D., Phung-Van, P.: A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Eng. Anal. Bound. Elem. 115, 52–63 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, L.W., Lei, Z.X., Liew, K.M.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos. Struct. 120, 189–199 (2015)

    Google Scholar 

  29. Zhang, L.W., Lei, Z.X., Liew, K.M.: Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos. Struct. 122, 172–183 (2015)

    Google Scholar 

  30. Zhang, L.W.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)

    Google Scholar 

  31. Lei, Z.X., Zhang, L.W., Liew, K.M.: Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations. Eng. Anal. Bound. Elem. 64, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Quoc, T.H., Van Tham, V., Tu, T.M.: Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech. 232, 1005–1023 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., Liu, W.: Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method. Acta Mech. 233, 3157–3174 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Ansari, R., Torabi, J., Hassani, R.: A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates. Eng. Struct. 181, 653–669 (2019)

    Google Scholar 

  35. Cho, J.-R.: Buckling analysis of sandwich plates with FG-CNTRC layers by natural element hierarchical models. J. Mech. Sci. Technol. 36, 1949–1957 (2022)

    Google Scholar 

  36. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. Part B Eng. 43, 411–421 (2012)

    Google Scholar 

  37. Yang, J., Huang, X.-H., Shen, H.-S.: Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Thin-Walled Struct. 148, 106514 (2020)

    Google Scholar 

  38. García-Macías, E., Castro-Triguero, R., Friswell, M.I., Adhikari, S., Sáez, A.: Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos. Struct. 152, 183–198 (2016)

    Google Scholar 

  39. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E., Marzocca, P.: Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels. Int. J. Mech. Sci. 149, 549–558 (2018)

    Google Scholar 

  40. Mirjavadi, S.S., Afshari, B.M., Barati, M.R., Hamouda, A.M.S.: Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection. Microsyst. Technol. 25, 3137–3150 (2019)

    Google Scholar 

  41. Vo-Duy, T., Truong, T.T., Nguyen-Quang, K., Nguyen-Thoi, T., Vu-Do, H.C.: A type of novel nonlinear distributions for improving significantly the stiffness of carbon nanotube-reinforced composite beams. Int. J. Comput. Methods. 17, 1950057 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. Part B Eng. 89, 187–218 (2016)

    Google Scholar 

  43. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Compos. Part B Eng. 115, 384–408 (2017)

    Google Scholar 

  44. Jiao, P., Chen, Z., Ma, H., Zhang, D., Ge, P.: Buckling analysis of thin rectangular FG-CNTRC plate subjected to arbitrarily distributed partial edge compression loads based on differential quadrature method. Thin-Walled Struct. 145, 106417 (2019)

    Google Scholar 

  45. Garcia-Macias, E., Rodriguez-Tembleque, L., Saez, A.: Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 186, 123–138 (2018)

    Google Scholar 

  46. Chiker, Y., Bachene, M., Guemana, M., Attaf, B., Rechak, S.: Free vibration analysis of multilayer functionally graded polymer nanocomposite plates reinforced with nonlinearly distributed carbon-based nanofillers using a layer-wise formulation model. Aerosp. Sci. Technol. 104, 105913 (2020)

    Google Scholar 

  47. Chiker, Y., Bachene, M., Bouaziz, S., Guemana, M., Amar, M.B., Haddar, M.: Free vibration analysis of hybrid laminated plates containing multilayer functionally graded carbon nanotube-reinforced composite plies using a layer-wise formulation. Arch. Appl. Mech. 91, 463–485 (2020)

    Google Scholar 

  48. Tran, H.Q., Tran, M.T., Nguyen-Tri, P.: A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates. Mech. Mater. 142, 103294 (2020)

    Google Scholar 

  49. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos. Struct. 152, 62–73 (2016)

    Google Scholar 

  50. Chakraborty, S., Dey, T., Kumar, R.: Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos. Part B Eng. 168, 1–14 (2019)

    Google Scholar 

  51. Arani, A.G., Kiani, F., Afshari, H.: Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. J. Sandw. Struct. Mater. 23, 255–278 (2019)

    Google Scholar 

  52. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H., Nguyen-Thoi, T.: An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput. Methods Appl. Mech. Eng. 332, 25–46 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Fu, T., Chen, Z., Yu, H., Wang, Z., Liu, X.: Mechanical behavior of laminated functionally graded carbon nanotube reinforced composite plates resting on elastic foundations in thermal environments. J. Compos. Mater. 53, 1159–1179 (2019)

    Google Scholar 

  54. Huu Quoc, T., Minh Tu, T., Van Tham, V.: Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refined plate theory. Materials (Basel) 12, 3675 (2019)

    Google Scholar 

  55. Malekzadeh, P., Zarei, A.R.: Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin-Walled Struct. 82, 221–232 (2014)

    Google Scholar 

  56. Malekzadeh, P., Heydarpour, Y.: Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50, 143–167 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, L.W., Selim, B.A.: Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Compos. Struct. 160, 689–705 (2017)

    Google Scholar 

  58. Lei, Z.X., Zhang, L.W., Liew, K.M.: Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Google Scholar 

  59. Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T., Yi, L.: Bending and free vibration analyses of antisymmetrically laminated carbon nanotube-reinforced functionally graded plates. J. Compos. Mater. 51, 3111–3125 (2017)

    Google Scholar 

  60. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 36, 1555–1561 (2005)

    Google Scholar 

  61. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012)

    Google Scholar 

  62. Zhang, C.-L., Shen, H.-S.: Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Appl. Phys. Lett. 89, 81904 (2006)

    Google Scholar 

  63. Saiah, B., Bachene, M., Guemana, M., Chiker, Y., Attaf, B.: On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies. Eng. Struct. 253, 113784 (2022)

    Google Scholar 

  64. Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press (2003)

    Google Scholar 

  65. Matsunaga, H.: Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos. Struct. 82, 499–512 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Bachene.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiker, Y., Bachene, M., Attaf, B. et al. Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates. Acta Mech 234, 1687–1711 (2023). https://doi.org/10.1007/s00707-022-03438-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03438-6

Navigation