Skip to main content
Log in

On the stability of the permanent rotations of a charged rigid body-gyrostat

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We consider the motion of a charged rigid body about a fixed point carrying a rotor that is attached along one of the principal axes of the body. This motion occurs under the action of the resultant of the uniform gravity field and the homogeneous magnetic field. The equations of motion are formulated, and they are presented by means of the Hamiltonian function in the framework of the Lie–Poisson system. These equations of motion have six equilibrium solutions. The sufficient conditions for instability for these equilibria are studied by utilizing the linear approximation method, while the sufficient conditions for stability are presented by means of the energy-Casimir method. For certain configuration of the body, the regions of Lyapunov stability and instability are determined in the plane of some parameters. Furthermore, we clarify that the regions of Lyapunov stability are a portion of the regions of linear stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rumiantsev, V.V.: Stability of permanent rotations of a heavy rigid body. Prikl. Math. Mekh. 20, 51–66 (1956)

    MathSciNet  Google Scholar 

  2. Pozharitskii, G.K.: On the stability of permanent rotations of a rigid body with a fixed point under the action of a Newtonian central force field. J. Appl. Math. Mech. 23, 1134–1137 (1959)

    Article  MathSciNet  Google Scholar 

  3. Irtegov, V.D.: On the problem of stability of steady motions of a rigid body in a potential force field. J. Appl. Math. Mech. 30, 1113–1117 (1966)

    Article  MATH  Google Scholar 

  4. Guliaev, M.P.: On the stability of rotations of a rigid body with one fixed point in the Euler case. Prikl. Math. Mech. 23, 579–582 (1959)

    Google Scholar 

  5. Lyapunov, A.M.: The General Problem of Stability of Motion. Obshch, Kharkov (1892)

    Google Scholar 

  6. Routh, E.J.: Dynamics of a System of Rigid Bodies: The Advanced Part. Dover Publications, New York (1955)

    MATH  Google Scholar 

  7. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  8. Rumiantsev, V.V.: On the stability of gyrostats. Prikl. Math. Mech. 25, 9–16 (1961)

    MathSciNet  Google Scholar 

  9. Kane, T.R., Flower, R.C.: Equivalence of two gyrostatic stability problems. J. Appl. Mech. 37, 1146–1147 (1970)

    Article  Google Scholar 

  10. da Silva, M.: Attitude stability of a gravity-stabilized gyrostat satellite. Celest. Mech. 2, 147–165 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rumiantsev, V.V.: On the stability of motion of certain types of gyrostats. J. Appl. Math. Mech. 25, 1158–1169 (1961)

    Article  MathSciNet  Google Scholar 

  12. Anchev, A.: On the stability of permanent rotations of a heavy gyrostat. J. Appl. Math. Mech. 26, 26–34 (1962)

    Article  MATH  Google Scholar 

  13. Anchev, A.: On the stability of permanent rotations of a quasi-symmetrical gyrostat. J. Appl. Math. Mech. 28, 194–197 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolesnikov, N.I.: On the stability of a free gyrostat. Prikl. Math. Mech. 27, 699–702 (1963)

    MathSciNet  Google Scholar 

  15. Leimanis, E.: The General Problem of the Motion of Coupled Rigid Bodies About a Fixed Point. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  16. Volterra, V.: Sur la théorie des variationas des latitudes. Acta Math. 22, 201–357 (1899)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cochran, J.E., Shu, P.H., Rew, S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5, 37–42 (1982)

    Article  MATH  Google Scholar 

  18. Hall, C.D.: Spinup dynamics of biaxial gyrostats. J. Astronaut. Sci. 43, 263–275 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Hall, C.D.: Spinup dynamics of gyrostats. J. Guid. Control Dyn. 18, 1177–1183 (1995)

    Article  MATH  Google Scholar 

  20. Iñarrea, M., Lanchares, V.: Chaos in the reorientation process of a dual-spin spacecraft with time dependent moments of inertia. Int. J. Bifurc. Chaos 10, 997–1018 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Lanchares, V., Iñarrea, M., Salas, J.P.: Spin rotor stabilization of a dual-spin spacecraft with time dependent moments of inertia. Int. J. Bifurc. Chaos 8, 609–617 (1998)

    Article  MATH  Google Scholar 

  22. Vera, A.J., Vigueras, A.: Hamiltonian dynamics of a gyrostat in the \(n\)-body problem: relative equilibria. Celest. Mech. Dyn. Astron. 94, 289–315 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Iñarrea, M., Lanchares, V., Pascual, A.I., Elipe, A.: Stability of the permanent rotations of an asymmetric gyrostat in a uniform Newtonian field. Appl. Math. Comput. 293, 404–415 (2017)

    MathSciNet  Google Scholar 

  24. Guirao, J.L.G., Vera, J.A.: Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid. Phys. D 241, 1648–1654 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vera, J.A.: The gyrostat with a fixed point in a Newtonian force field: relative equilibria and stability. J. Math. Anal. Appl. 401, 836–849 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Anchev, A.: Permanent rotations of a heavy gyrostat having a stationary point. J. Appl. Math. Mech. 31, 48–58 (1967)

    Article  Google Scholar 

  27. Hassan, S.Z., Kharrat, B.N., Yehia, H.M.: On the stability of motion of a gyrostat about a fixed point under the action of non-symmetric fields. Eur. J. Mech. A/Solids 18, 313–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tsogas, V., Kalvouridis, T.J., Mavraganis, A.G.: Equilibrium states of a gyrostat satellite in an annular configuration of \(N\) big bodies. Acta Mech. 175, 181–195 (2005)

    Article  MATH  Google Scholar 

  29. Elipe, A., Lanchares, V.: Two equivalent problems: gyrostats in free motion and parametric quadratic Hamiltonians. Mech. Res. Commun. 24, 583–590 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kalvouridis, T.J., Tsogas, V.: Rigid body dynamics in the restricted ring problem of \(n+1\) bodies. Astrophys. Space Sci. 282, 749–763 (2002)

    Article  Google Scholar 

  31. Borisov, A.V., Mamaev, I.S.: Rigid Body Dynamics-Hamiltonian Methods, Integrability. Chaos. Institute of Computer Science, Izhevsk, Moscow (2005). (in Russian)

  32. Yehia, H.M., Elmandouh, A.A.: New conditional integrable cases of motion of a rigid body with Kovalevskaya’s configuration. J. Phys. A Math. Theor. 44, 012001 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yehia, H.M., Elmandouh, A.A.: A new integrable problem with a quartic integral in the dynamics of a rigid body. J. Phys. A Math. Theor. 46, 142001 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Elmandouh, A.A.: New integrable problems in rigid body dynamics with quartic integrals. Acta Mech. 226, 2461–2472 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  35. Elmandouh, A.A.: New integrable problems in the dynamics of particle and rigid body dynamic. Acta Mech. 226, 3749–3762 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  36. Bradbery, T.C.: Theoretical Mechanics. Wiley, New York (1968)

    Google Scholar 

  37. Birtea, P., Caşu, I., Comǎnescu, D.: Hamiltonian-Poisson formulation for the rotational motion of a rigid body in the presence of an axisymmetric force field and a gyroscopic torque. Phys. Lett. A 375, 3941–3945 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Deprit, A., Elipe, A.: Complete reduction of the Euler-Poinsot problem. J. Astronaut. Sci. 41, 603–628 (1993)

    MathSciNet  Google Scholar 

  39. Chetaev, N.G.: The Stability of Motion. Pergamon Press, New York (1961)

    MATH  Google Scholar 

  40. Holm, D., Marsden, J.E., Ratiu, T.S., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–116 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Elmandouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmandouh, A.A. On the stability of the permanent rotations of a charged rigid body-gyrostat. Acta Mech 228, 3947–3959 (2017). https://doi.org/10.1007/s00707-017-1927-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1927-z

Navigation