Skip to main content
Log in

A higher-order nonlinear beam element for planar structures by using a new finite element approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present research, a new finite element approach is presented for large deflection modeling of planar Euler–Bernoulli beams. In this approach, in addition to the position and rotation (kinematic variables), internal force and moment (kinetic variables) are considered as the nodal coordinates. For this purpose, each of the kinematic and kinetic variables are individually interpolated. Thereby, the primary governing equations of the elements (such as constitutive, equilibrium and geometric equations) are not combined with each other. On the other hand, the nonlinear governing equations are not simplified to linear equations. Finally, using the weighted residual method for each of the governing equations, several nonlinear equations are obtained due to the nodal coordinates. The Gauss–Legendre nodes are used for discretization of the finite element. Using the presented approach, a new higher-order nonlinear element is obtained which is simple, more efficient and more accurate than similar beam elements. The accuracy and efficiency of the presented higher-order element are investigated by comparing the results with recent works using the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shabana, A.A., Yakoub, R.A.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  2. Yakoub, R.A., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  3. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  Google Scholar 

  4. Simo, J.C.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  Google Scholar 

  5. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20, 51–68 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  7. Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Omar, M.A., Shabana, A.A.: Two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  9. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  Google Scholar 

  10. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127, 621–630 (2005)

    Article  Google Scholar 

  12. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298, 1129–1149 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  14. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26, 245–263 (2011)

    Article  Google Scholar 

  15. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8, 021004 (2013)

    Article  Google Scholar 

  16. Nachbagauer, K., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic examples. J. Comput. Nonlinear Dyn. 9, 011013 (2014)

    Article  Google Scholar 

  17. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)

    Article  Google Scholar 

  18. Nachbagauer, K.: State of the Art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  Google Scholar 

  19. Yamashita, H., Sugiyama, H.: Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation. Nonlinear Dyn. 67, 177–189 (2012)

    Article  MathSciNet  Google Scholar 

  20. Valkeapaa, A.I., Matikainen, M.K., Mikkola, A.M.: Meshing strategies in the absolute nodal coordinate formulation-based Euler–Bernoulli beam elements. J. Multi-body Dyn. 230(4), 606–614 (2015)

    Google Scholar 

  21. Babuska, I., Guo, B.Q.: The h, p and h-p version of the finite element method; basis theory and applications. Adv. Eng. Softw. 15, 159–174 (1992)

    Article  Google Scholar 

  22. Guo, B.Q., Babuska, I.: The h-p version of the finite element method, part 1: the basic approximation results. Comput. Mech. 1, 21–41 (1986)

    Article  Google Scholar 

  23. Sharifnia, M.: Nonlinear dynamics of flexible links in the planar parallel robots using a new beam element. J. Vib. Control 26(7–8), 475–489 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zheng, Y., Shabana, A.A.: A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element. Nonlinear Dyn. 87(2), 1031–1043 (2017)

    Article  Google Scholar 

  25. Zheng, Y., Shabana, A.A.: ANCF consistent rotation-based finite element formulation. J. Comput. Nonlinear Dyn. 11, 014502 (2016)

    Article  Google Scholar 

  26. Kulkarni, S., Shabana, A.A.: Spatial ANCF/CRBF beam elements. Acta Mech. 230(3), 929–952 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jonker, J.B., Meijaard, J.P.: A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems. Int. J. Non-Linear Mech. 53, 63–74 (2013)

    Article  Google Scholar 

  28. Yilmaz, M., Omurtag, M.H.: Large deflection of 3D curved rods: an objective formulation with principal axes transformations. Comput. Struct. 163, 71–82 (2016)

    Article  Google Scholar 

  29. Fan, W., Zhu, W.D., Ren, H.: A new singularity-free formulation of a three-dimensional Euler–Bernoulli beam using Euler parameters. J. Comput. Nonlinear Dyn. 11, 041013 (2016)

    Article  Google Scholar 

  30. Fan, W., Zhu, W.D.: An accurate singularity-free formulation of a three-dimensional curved Euler–Bernoulli beam for flexible multibody dynamic analysis. J. Vib. Acoust. 138, 051001 (2016)

    Article  Google Scholar 

  31. Fan, W., Zhu, W.D.: An accurate singularity-free geometrically exact beam formulation using Euler parameters. Nonlinear Dyn. 91(2), 1095–1112 (2018)

    Article  Google Scholar 

  32. Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for solution of a new dynamic equation for an axially moving beam. Comput. Math. Appl. 72(9), 2167–2180 (2016)

    Article  MathSciNet  Google Scholar 

  33. Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40(3), 261–285 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sharifnia, M.: A new beam element for analysis of planar large deflection. J. Braz. Soc. Mech. Sci. Eng. 40, 92 (2018)

    Article  Google Scholar 

  35. Hoffman, J.D.: Numerical Methods for Engineers and Scientists. McGraw-Hill, New York (1992)

    MATH  Google Scholar 

  36. Nachbagauer, K., Gruber, P.G., Vetyukov, Y., Gerstmayr, J.: A spatial thin beam finite element based on the absolute nodal coordinate formulation without singularities. In: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Washington, DC, USA, August 28–31 (2011)

  37. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  38. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. Trans. ASME 122, 498–507 (2000)

    Article  Google Scholar 

Download references

Funding

No funding was received for the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sharifnia.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifnia, M. A higher-order nonlinear beam element for planar structures by using a new finite element approach. Acta Mech 233, 495–511 (2022). https://doi.org/10.1007/s00707-021-03076-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03076-4

Navigation