Skip to main content
Log in

Spatial ANCF/CRBF beam elements

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the consistent rotation-based formulation (CRBF) is used to develop new three-dimensional beam elements starting with the absolute nodal coordinate formulation (ANCF) kinematic description. While the proposed elements employ orientation parameters as nodal coordinates, independent rotation interpolation is avoided, leading to unique displacement and rotation fields. Furthermore, the proposed spatial ANCF/CRBF-based beam elements adhere to the noncommutative nature of the rotation parameters, allow for arbitrarily large three-dimensional rotation, and eliminate the need for using co-rotational or incremental solution procedures. Because the proposed elements have a general geometric description consistent with computational geometry methods, accurate definitions of the shear and bending deformations can be developed and evaluated, and curved structures and complex geometries can be systematically modeled. Three new spatial ANCF/CRBF beam elements, which use absolute positions and rotation parameters as nodal coordinates, are proposed. The time derivatives of the ANCF transverse position vector gradients at the nodes are expressed in terms of the time derivatives of rotation parameters using a nonlinear velocity transformation matrix. The velocity transformation leads to lower-dimensional elements that ensure the continuity of stresses and rotations at the element nodal points. The numerical results obtained from the proposed ANCF/CRBF elements are compared with the more general ANCF beam elements and with elements implemented in a commercial FE software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe, K.J.: Finite Element Procedures. Prentice Hall Inc, Englewood Cliffs (1996)

    MATH  Google Scholar 

  2. Belytschko, T., Hsieh, B.J.: Non-linear transient finite element analysis with convected co-ordinates. Int. J. Numer. Methods Eng. 7(3), 255–271 (1973)

    Article  MATH  Google Scholar 

  3. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  4. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  5. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 122(4), 498–507 (2000)

    Google Scholar 

  6. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis, 3rd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  7. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures, Vol. 1: Essentials. Wiley, New York (1991)

    MATH  Google Scholar 

  8. Ding, J., Wallin, M., Wei, C., Recuero, A.M., Shabana, A.A.: Use of independent rotation field in the large displacement analysis of beams. Nonlinear Dyn. 76, 1829–1843 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dmitrochenko, O., Mikkola, A.: Digital nomenclature code for topology and kinematics of finite elements based on the absolute nodal co-ordinate formulation. IMechE J. Multibody Dyn. 225, 34–51 (2011)

    Google Scholar 

  10. Gerstmayr, J., Gruber, P., Humer, A.: Comparison of fully parameterized and gradient deficient elements in the absolute nodal coordinate formulation. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V006T10A025–V006T10A025 (2017)

  11. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Article  Google Scholar 

  12. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greenberg, M.D.: Advanced Engineering Mathematics, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  14. Gruber, P.G., Nachbagauer, K., Vetyukov, Y., Gerstmayr, J.: A novel director-based Bernoulli–Euler beam finite element in absolute nodal coordinate formulation free of geometric singularities. Mech. Sci. 4(2), 279–289 (2013)

    Article  Google Scholar 

  15. Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75, 653–671 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)

    MATH  Google Scholar 

  17. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 1–12 (2017)

    Google Scholar 

  18. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  19. Matikainen, M.K., von Hertzen, R., Mikkola, A., Gerstmayr, J.: Elimination of high frequencies in the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 224(1), 103–116 (2010)

    Google Scholar 

  20. Nachbagauer, K.: Development of shear and cross-section deformable beam finite elements applied to large deformation and dynamics problems. Ph.D. dissertation, Johannes Kepler University, Linz, Austria (2013)

  21. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  22. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004-1–021004-7 (2013)

    Google Scholar 

  23. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nicolsen, B., Wang, L., Shabana, A.A.: Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios. J. Sound Vib. 405, 208–233 (2017)

    Article  Google Scholar 

  25. Orzechowski, G.: Analysis of beam elements of circular cross-section using the absolute nodal coordinate formulation. Arch. Mech. Eng. 59, 283–296 (2012)

    Article  Google Scholar 

  26. Orzechowski, G., Frączek, J.: Integration of the equations of motion of multibody systems using absolute nodal coordinate formulation. Acta Mech. Autom. 6, 75–83 (2012)

    Google Scholar 

  27. Orzechowski, G., Frączek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  28. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. J. Nonlinear Dyn. 81, 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017)

    Google Scholar 

  30. Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230, 1–16 (2015)

  31. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. (2018) (accepted for publication)

  32. Rankin, C.C., Brogan, F.A.: An Element independent corotational procedure for the treatment of large rotations. ASME J. Pressure Vessel Technol. 108, 165–174 (1986)

    Article  Google Scholar 

  33. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  34. Shabana, A.A.: Uniqueness of the geometric representation in large rotation finite element formulations. J. Comput. Nonlinear Dyn. 5(4), 044501-1–44501-5 (2010)

    Article  Google Scholar 

  35. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  36. Shabana, A.A.: ANCF consistent rotation-based finite element formulation. ASME J. Comput. Nonlinear Dyn. 11(1), 014502-1–014502-4 (2016)

    MathSciNet  Google Scholar 

  37. Shabana, A.A., Patel, M.: Coupling between shear and bending in the analysis of beam problems: planar case. J. Sound Vib. 419, 510–525 (2018)

    Article  Google Scholar 

  38. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. Trans. Am. Soc. Mech. Eng. J. Mechv Des. 123(4), 606–613 (2001)

    Google Scholar 

  39. Shampine, L., Gordon, M.: Computer Solution of ODE: The Initial Value Problem. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  40. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case, part I. J. Appl. Mech. 53, 849–863 (1986)

    Article  MATH  Google Scholar 

  41. Takahashi, Y., Shimizu, N.: Study on elastic forces of the absolute nodal coordinate formulation for deformable beams. In: Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Las Vegas, NV (1999)

  42. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.Z.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 4, 021009-1–021009-14 (2009)

    Article  Google Scholar 

  43. Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Paulo, F.: Elasto-hydro-dynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115, 106–120 (2013)

    Article  Google Scholar 

  44. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Co. Inc., New York (1970)

    MATH  Google Scholar 

  45. Wittenburg, J.: Dynamics of Multibody Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  46. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 123(4), 614–621 (2001)

    Google Scholar 

  47. Zheng, Y., Shabana, A.A.: A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element. Nonlinear Dyn. 87(2), 1031–1043 (2017)

    Article  Google Scholar 

  48. Zheng, Y., Shabana, A.A., Zhang, D.: Curvature expressions for the large displacement analysis of planar beam motions. ASME J. Comput. Nonlinear Dyn. 13, 011013-1–011013-12 (2018)

    Google Scholar 

  49. Zienkiewicz, O.C.: The Finite Element Method, 3rd edn. McGraw Hill, New York (1977)

    MATH  Google Scholar 

  50. Zienkiewicz, O.C, Taylor, R.L.: The Finite Element Method, Vol. 2: Solid Mechanics, 5th edn. Butterworth Heinemann, Boston (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Shabana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S., Shabana, A.A. Spatial ANCF/CRBF beam elements. Acta Mech 230, 929–952 (2019). https://doi.org/10.1007/s00707-018-2294-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2294-0

Navigation