Skip to main content
Log in

A four-variable global–local shear deformation theory for the analysis of deep curved laminated composite beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A precise global–local shear deformation theory is developed for the prediction of static and dynamic behaviors of thin and thick layered curved beams. The effect of deepness is considered in the derivation of the proposed beam theory. Variations of the shear stress along the thickness direction of the curved beam are approximated by using a global parabolic shear stress function which is locally refined at each layer. The zero conditions of shear stresses on the boundary surfaces of the curved beam are exactly satisfied, and no shear correction coefficient is needed. One of the important features of the present theory is that it has only four unknown field variables, which is only one more than the first-order shear deformation theory. A displacement-based finite element model is employed for solving the governing equations. For validation, the results obtained from static and free vibration tests are compared with the results of three-dimensional (3D) finite element analysis, classical theories, and other advanced shear deformation beam theories. The obtained numerical results show that the present model can precisely predict static and free vibration responses of both shallow and deep composite beams with arbitrary boundary and layup conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Most, J., Stegmair, D., Petry, D.: Error estimation between simple, closed-form analytical formulae and full-scale FEM for interlaminar stress prediction in curved laminates. Compos. Struct. 131, 72–81 (2015)

    Article  Google Scholar 

  2. Chidamparam, P., Leissa, A.W.: Vibrations of planar curved beams, rings, and arches. Appl. Mech. Rev. 46(12), 467–84 (1993)

    Article  Google Scholar 

  3. Qatu, M.S.: Theories and analyses of thin and moderately thick laminated composite curved beams. Int. J. Solids Struct. 30(23), 2743–56 (1993)

    Article  Google Scholar 

  4. Mcrobbie, S., Longmuir, A.J., Wilcox, J., Gibson, A.G., Chandler, H.W.: Through-thickness stress in curved laminates of single- and double-skinned construction. Compos. Struct. 26(5), 339–345 (1995)

    Google Scholar 

  5. Shenoi, R.A., Wang, W.: Through-thickness stresses in curved composite laminates and sandwich beams. Compos. Sci. Technol. 61(14), 1501–1512 (2001)

    Article  Google Scholar 

  6. Luu, A.T., Kim, N.I., Lee, J.: Bending and buckling of general laminated curved beams using NURBS-based isogeometric analysis. Eur. J. Mech. A Solids 54, 218–231 (2015)

    Article  MathSciNet  Google Scholar 

  7. Kurtaran, H.: Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method. Compos. Struct. 128, 241–250 (2015)

    Article  Google Scholar 

  8. Ganapathi, M., Patel, B.P., Saravanan, J., Touratier, M.: Shear flexible curved spline beam element for static analysis. Finite Elem. Anal. Des. 32, 181–202 (1999)

    Article  Google Scholar 

  9. Kress, G., Roos, R., Barbezat, M., Dransfeld, C., Ermanni, P.: Model for interlaminar normal stress in singly curved laminates. Compos. Struct. 69(4), 458–469 (2005)

    Article  Google Scholar 

  10. Gao, Y., Wang, M.Z., Zhao, B.S.: The refined theory of rectangular curved beams. Acta Mech. 189, 141–150 (2007)

    Article  Google Scholar 

  11. Kim, J.G., Park, Y.K.: The effect of additional equilibrium stress functions on the three-node hybrid-mixed curved beam element. J. Mech. Sci. Technol. 22, 2030–2037 (2008)

    Article  Google Scholar 

  12. Hajianmaleki, M., Qatu, M.S.: Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions. Compos. Part B 43, 1767–1775 (2012)

    Article  Google Scholar 

  13. Thurnherr, C., Groh, R.M.J., Ermanni, P., Weaver, P.M.: Higher-order beam model for stress predictions in curved beams made from anisotropic materials. Int. J. Solids Struct. 97(98), 16–28 (2016)

    Article  Google Scholar 

  14. Lezgy-Nazargah, M., Shariyat, M., Beheshti-Aval, S.B.: A refined high-order global–local theory for finite element bending and vibration analyses of the laminated composite beams. Acta Mech. 217, 219–242 (2011)

    Article  Google Scholar 

  15. Lezgy-Nazargah, M.: Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mech. 228(5), 1923–1940 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lezgy-Nazargah, M., Beheshti-Aval, S.B., Shariyat, M.: A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths. Thin Walled Struct. 49, 351–362 (2011)

    Article  Google Scholar 

  17. Beheshti-Aval, S.B., Lezgy-Nazargah, M.: A new coupled refined high-order global–local theory and finite element model for electromechanical response of smart laminated/sandwich beams. Arch. Appl. Mech. 82(15), 1709–1752 (2012)

    Article  Google Scholar 

  18. Icardi, U.: Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations. Compos. Part B 32, 343–354 (2001)

    Article  Google Scholar 

  19. Robbins Jr., D.H., Reddy, J.N.: Modeling of thick composites using a layerwise laminate theory. Int. J. Numer. Methods Eng. 36, 655–677 (1993)

    Article  Google Scholar 

  20. Li, X., Liu, D.: Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Methods Eng. 40, 1197–1212 (1997)

    Article  Google Scholar 

  21. Carrera, E., Brischetto, S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82, 549–562 (2008)

    Article  Google Scholar 

  22. Shariyat, M.: A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010)

    Article  Google Scholar 

  23. Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta Mech. 91(1–2), 1–9 (1992)

    Article  MathSciNet  Google Scholar 

  24. Adam, C.: Nonlinear flexural vibrations of layered panels with initial imperfections. Acta Mech. 181(1–2), 91–104 (2006)

    Article  Google Scholar 

  25. Adam, C., Ziegler, F.: Forced flexural vibrations of elastic–plastic composite beams with thick layers. Compos. Part B 28(3), 201–213 (1997)

    Article  Google Scholar 

  26. Adam, C.: Moderately large vibrations of imperfect elastic–plastic composite beams with thick layers. Int. J. Acoust. Vib. 7(1), 11–20 (2002)

    Google Scholar 

  27. Soedel, W.: Vibrations of Shells and Plates. Taylor & Francis, New York (2005)

    MATH  Google Scholar 

  28. Lezgy-Nazargah, M., Vidal, P., Polit, O.: NURBS-based isogeometric analysis of laminated composite beams using refined sinus model. Eur. J. Mech. A Solids 53, 34–47 (2015)

    Article  MathSciNet  Google Scholar 

  29. Beheshti-Aval, S.B., Lezgy-Nazargah, M., Vidal, P., Polit, O.: A refined sinus finite element model for the analysis of piezoelectric laminated beams. J. Intell. Mater. Syst. Struct. 22(3), 203–219 (2011)

    Article  Google Scholar 

  30. Leissa, A.W., Qatu, M.S.: Vibration of Continuous Systems. McGraw Hill, New York (2011)

    Google Scholar 

  31. Sadd, M.: Elasticity: Theory, Applications, and Numerics. Elsevier, Kidlington (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lezgy-Nazargah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Material coordinate transformation

$$\begin{aligned} Q_{11}^{(i)}= & {} c_{11}^{(i)} \cos ^{4}\theta +2(c_{12}^{(i)} +2c_{66}^{(i)} )\cos ^{2}\theta \sin ^{2}\theta +C_{22}^{(i)} \sin ^{4}\theta , \end{aligned}$$
(A.1)
$$\begin{aligned} Q_{12}^{(i)}= & {} c_{12}^{(i)} \cos ^{4}\theta +(c_{11}^{(i)} +c_{22}^{(i)} -4c_{66}^{(i)} )\cos ^{2}\theta \sin ^{2}\theta +c_{12}^{(i)} \sin ^{4}\theta , \end{aligned}$$
(A.2)
$$\begin{aligned} Q_{13}^{(i)}= & {} c_{13}^{(i)} \cos ^{2}\theta +c_{23}^{(i)} \sin ^{2}\theta , \end{aligned}$$
(A.3)
$$\begin{aligned} Q_{16}^{(i)}= & {} \left( c_{11}^{(i)} -c_{12}^{(i)} -2c_{66}^{(i)} \right) \cos ^{3}\theta \sin \theta +\left( 2c_{66}^{(i)} +c_{12}^{(i)} -c_{22}^{(i)} \right) \cos \theta \sin ^{3}\theta , \end{aligned}$$
(A.4)
$$\begin{aligned} Q_{26}^{(i)}= & {} \left( c_{12}^{(i)} -c_{22}^{(i)} +2c_{66}^{(i)} \right) \cos ^{3}\theta \sin \theta +\left( c_{11}^{(i)} -c_{12}^{(i)} -2c_{66}^{(i)} \right) \cos \theta \sin ^{3}\theta , \end{aligned}$$
(A.5)
$$\begin{aligned} Q_{36}^{(i)}= & {} \left( c_{13}^{(i)} -c_{23}^{(i)} \right) \cos \theta \sin \theta , \end{aligned}$$
(A.6)
$$\begin{aligned} Q_{22}^{(i)}= & {} c_{22}^{(i)} \cos ^{4}\theta +2\left( c_{12}^{(i)} +2c_{66}^{(i)} \right) \cos ^{2}\theta \sin ^{2}\theta +C_{11}^{(i)} \sin ^{4}\theta , \end{aligned}$$
(A.7)
$$\begin{aligned} Q_{23}^{(i)}= & {} c_{23}^{(i)} \cos ^{2}\theta +c_{13}^{(i)} \sin ^{2}\theta , \end{aligned}$$
(A.8)
$$\begin{aligned} Q_{33}^{(i)}= & {} c_{33}^{(i)} , \end{aligned}$$
(A.9)
$$\begin{aligned} Q_{44}^{(i)}= & {} c_{44}^{(i)} \cos ^{2}\theta +c_{55}^{(i)} \sin ^{2}\theta , \end{aligned}$$
(A.10)
$$\begin{aligned} Q_{45}^{(i)}= & {} \left( c_{55}^{(i)} -c_{44}^{(i)} \right) \cos \theta \sin \theta , \end{aligned}$$
(A.11)
$$\begin{aligned} Q_{55}^{(i)}= & {} c_{55}^{(i)} \cos ^{2}\theta +c_{44}^{(i)} \sin ^{2}\theta , \end{aligned}$$
(A.12)
$$\begin{aligned} Q_{66}^{(i)}= & {} \left( c_{11}^{(i)} +c_{22}^{(i)} -2c_{12}^{(i)} -2c_{66}^{(i)} \right) \cos ^{2}\theta \sin ^{2}\theta +c_{66}^{(i)} \left( \cos ^{4}\theta +\sin ^{4}\theta \right) \end{aligned}$$
(A.13)

where \(\theta \) is the fiber orientation of the ith composite layer (i.e., the angle from s-direction to the 1-direction).

Appendix B: Euler’s differential equation

A first-order differential equation can be written in the following standard form:

$$\begin{aligned} \frac{\partial y}{\partial z}+p(z)y=g\left( z \right) \end{aligned}$$
(B.1)

where y(z) is an unknown function to be determined and p(z) and g(z) are continuous functions of z. The above type of differential equations is called Euler’s equation. The solution of the above equation is given by:

$$\begin{aligned} y(z)=\frac{1}{\mu (z)}\left( {y_{0} +\int {\mu (z)g\left( z \right) \,\mathrm{d}z} } \right) , \end{aligned}$$
(B.2)

where \(\mu (z)=\exp ^{\int {p\left( z \right) \,\mathrm{d}z} }\), and \(y_{0} \) is a constant that must be determined by applying the boundary condition.

Appendix C: Calculation of shear and radial stresses from equilibrium equations

In the absence of body forces, the equilibrium equations for a curved beam in the polar coordinate system (\(\bar{{r}}\), \(\theta \)) can be written as follows [31]:

$$\begin{aligned} \frac{\partial \sigma _{\overline{{rr}}} }{\partial \bar{{r}}}+\frac{1}{\bar{{r}}}\frac{\partial \sigma _{\bar{{r}}\theta } }{\partial \theta }+\frac{\left( \sigma _{\overline{{rr}}} -\sigma _{\theta \theta }\right) }{\partial \bar{{r}}}=0, \end{aligned}$$
(C.1.1)
$$\begin{aligned} \frac{\partial \sigma _{\bar{{r}}\theta } }{\partial \bar{{r}}}+\frac{1}{\bar{{r}}}\frac{\partial \sigma _{\theta \theta } }{\partial \theta }+\frac{2\sigma _{\bar{{r}}\theta } }{\bar{{r}}}=0. \end{aligned}$$
(C.1.2)

Note that the s- and r-coordinates are related to polar coordinates (\(\bar{{r}}\), \(\uptheta )\) as follows:

$$\begin{aligned} r= & {} \bar{{r}}-R\end{aligned}$$
(C.2.1)
$$\begin{aligned} s= & {} R\theta . \end{aligned}$$
(C.2.2)

Equation (C.1.2) can be rewritten as follows:

$$\begin{aligned} \frac{\partial \sigma _{\bar{{r}}\theta } }{\partial \bar{{r}}}+\frac{2\sigma _{\bar{{r}}\theta } }{\bar{{r}}}=-\frac{1}{\bar{{r}}}\frac{\partial \sigma _{\theta \theta } }{\partial \theta }. \end{aligned}$$
(C.3)

The solution of the above Euler’s differential equation with considering the coordinate transformation relations (C.2) can be written as:

$$\begin{aligned} \sigma _{sr} =\frac{1}{(R+r)^{2}}\left[ {-\frac{1}{(R-h/2)^{2}}-\int _0^r {(R+r)R\frac{\partial \sigma _{ss} }{\partial s}\mathrm{d}r} } \right] . \end{aligned}$$
(C.4)

Similarly, Eq. (C.1.1) can be rewritten in the following form:

$$\begin{aligned} \frac{\partial \sigma _{\overline{{rr}}} }{\partial \bar{{r}}}+\frac{\sigma _{\overline{{rr}}} }{\partial \bar{{r}}}=\frac{\sigma _{\theta \theta } }{\partial \bar{{r}}}-\frac{1}{\bar{{r}}}\frac{\partial \sigma _{\bar{{r}}\theta } }{\partial \theta }. \end{aligned}$$
(C.5)

After solving the above Euler’s differential equation, the following expression is obtained for the normal stress:

$$\begin{aligned} \sigma _{rr} =\frac{1}{(R+r)}\left[ {-\frac{1}{(R-h/2)}+\int _0^r {\left( \sigma _{ss} -R\frac{\partial \sigma _{sr} }{\partial s}\right) \mathrm{d}r} } \right] . \end{aligned}$$
(C.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lezgy-Nazargah, M. A four-variable global–local shear deformation theory for the analysis of deep curved laminated composite beams. Acta Mech 231, 1403–1434 (2020). https://doi.org/10.1007/s00707-019-02593-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02593-7

Navigation