Skip to main content
Log in

Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The small-scale effects on the mechanical responses of micro-rotating disks with angular acceleration are investigated based on the strain gradient theory, as one of the powerful non-classical continuum theories which have been developed to justify the empirical observations of mechanical behavior in small-scale structures and components. The differential equations governing motion of the micro-disk elements in radial and circumferential direction together with the corresponding boundary conditions are derived. Then, an analytical solution is presented for the components of the displacement field which can be used as a base for determination of the components of the stress field. In a numerical case study, the distribution of stress components as well as of the displacement components is investigated, and the obtained results are compared with those of the classical continuum theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang, C., Guo, W., Feng, Q.: Deflection and stability of membrane structures under electrostatic and Casimir forces in microelectromechanical systems. Acta Mech. 180(1–4), 49–60 (2005)

    Article  MATH  Google Scholar 

  2. Fu, Y., Zhang, J.: Electromechanical dynamic buckling phenomenon in symmetric electric fields actuated microbeams considering material damping. Acta Mech. 215(1–4), 29–42 (2010)

    Article  MATH  Google Scholar 

  3. Zhu, J., Ru, C., Mioduchowski, A.: High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators. Acta Mech. 212(1–2), 69–81 (2010)

    Article  MATH  Google Scholar 

  4. Pakniyat, A., Salarieh, H., Alasty, A.: Stability analysis of a new class of MEMS gyroscopes with parametric resonance. Acta Mech. 223(6), 1169–1185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coutu Jr., R.A., Kladitis, P.E., Starman, L., Reid, J.R.: A comparison of micro-switch analytic, finite element, and experimental results. Sens. Actuators A Phys. 115(2–3), 252–258 (2004)

    Article  Google Scholar 

  6. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  7. Stölken, J.S., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  8. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060 (2005)

    Article  Google Scholar 

  9. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koiter, W.: Couple-stress in the theory of elasticity. In: Proc. K. Ned. Akad. Wet, pp. 17–44. North Holland Pub, Amsterdam (1964)

  11. Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  12. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  13. Farajpour, A., Yazdi, M.H., Rastgoo, A., Mohammadi, M.: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mousavi, S.M., Reddy, J., Romanoff, J.: Analysis of anisotropic gradient elastic shear deformable plates. Acta Mech. 227(12), 3639–3656 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)

    Article  MATH  Google Scholar 

  17. Şimşek, M., Aydın, M., Yurtcu, H., Reddy, J.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226(11), 3807–3822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Borjalilou, V., Asghari, M.: Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 229(9), 3869–3884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226(2), 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taati, E., Najafabadi, M.M., Tabrizi, H.B.: Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225(7), 1823–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Asghari, M., Kahrobaiyan, M., Nikfar, M., Ahmadian, M.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223(6), 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S., Cetinkaya, C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223(6), 1137–1152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghayesh, M.H., Farokhi, H., Alici, G.: Subcritical parametric dynamics of microbeams. Int. J. Eng. Sci. 95, 36–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kahrobaiyan, M., Rahaeifard, M., Tajalli, S., Ahmadian, M.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zheng, Y., Zhang, H., Chen, Z., Ye, H.: Size and surface effects on the mechanical behavior of nanotubes in first gradient elasticity. Compos. Part B Eng. 43(1), 27–32 (2012)

    Article  Google Scholar 

  28. Yang, W., Yang, F., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sens. Actuators A Phys. 248, 10–21 (2016)

    Article  Google Scholar 

  29. Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T., Mashhadi, M.M.: Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory. Acta Mech. 225(6), 1523–1535 (2014)

    Article  MathSciNet  Google Scholar 

  30. Tang, M., Ni, Q., Wang, L., Luo, Y., Wang, Y.: Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 84, 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Arani, A.G., Abdollahian, M., Kolahchi, R.: Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory. Polym. Compos. 36(7), 1314–1324 (2015)

    Article  Google Scholar 

  32. Hosseini, M., Dini, A., Eftekhari, M.: Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech. 228(5), 1563–1580 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sadeghi, H., Baghani, M., Naghdabadi, R.: Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 50(1), 22–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Collin, F., Caillerie, D., Chambon, R.: Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. Int. J. Solids Struct. 46(22–23), 3927–3937 (2009)

    Article  MATH  Google Scholar 

  35. Hashemi, M., Asghari, M.: Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory. Meccanica 51(6), 1435–1444 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Longitudinal behavior of strain gradient bars. Int. J. Eng. Sci. 66, 44–59 (2013)

    Article  MATH  Google Scholar 

  37. Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Nonlinear Mech. 47(8), 863–873 (2012)

    Article  Google Scholar 

  38. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Analysis and fabrication of reciprocal motors applied for microgyroscopes. J. Micro/Nanolithogr. MEMS MOEMS 8(4), 043046 (2009)

    Article  Google Scholar 

  39. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes. Sens. Actuators A Phys. 157(1), 68–76 (2010)

    Article  Google Scholar 

  40. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Suppression of dynamic offset of electromagnetic drive module for micro-gyroscope. Mech. Syst. Signal Process. 25(2), 680–693 (2011)

    Article  Google Scholar 

  41. Lee, S., Kim, D., Bryant, M.D., Ling, F.F.: A micro corona motor. Sens. Actuators A Phys. 118(2), 226–232 (2005)

    Article  Google Scholar 

  42. Danesh, V., Asghari, M.: Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech. 225(7), 1955–1965 (2014)

    Article  MATH  Google Scholar 

  43. Baghani, M., Heydarzadeh, N., Roozbahani, M.: Stress analysis of a functionally graded micro/nanorotating disk with variable thickness based on the strain gradient theory. Int. J. Appl. Mech. 8(02), 1650020 (2016)

    Article  Google Scholar 

  44. Hosseini, M., Shishesaz, M., Tahan, K.N., Hadi, A.: Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. Int. J. Eng. Sci. 109, 29–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tang, S.: Note on acceleration stress in a rotating disk. Int. J. Mech. Sci. 12(2), 205–207 (1970)

    Article  Google Scholar 

  46. Reid, S.: On the influence of acceleration stresses on the yielding of disks of uniform thickness. Int. J. Mech. Sci. 14(11), 755–763 (1972)

    Article  Google Scholar 

  47. Reddy, T.Y., Srinath, H.: Effect of acceleration stresses on the yielding of rotating disks. Int. J. Mech. Sci. 16(8), 593–596 (1974)

    Article  Google Scholar 

  48. Zheng, Y., Bahaloo, H., Mousanezhad, D., Mahdi, E., Vaziri, A., Nayeb-Hashemi, H.: Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity. Int. J. Mech. Sci. 119, 283–293 (2016)

    Article  Google Scholar 

  49. Dastjerdi, S., Tadi Beni, Y.: A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mech. Based Design Struct. Mach. 1–26 (2019)

  50. Altan, B., Aifantis, E.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  51. Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. Mater. 26(2), 319–324 (1992)

    Article  Google Scholar 

  52. Harrison, H., Nettleton, T.: Advanced Engineering Dynamics. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  53. Shodja, H., Ahmadpoor, F., Tehranchi, A.: Calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli–Euler beam with surface effects. J. Appl. Mech. 79(2), 021008 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, E., Asghari, M. & Danesh, V. Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity . Acta Mech 230, 3259–3278 (2019). https://doi.org/10.1007/s00707-019-02461-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02461-4

Navigation