Skip to main content
Log in

Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff–Brenner potential

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This research work addresses questions on the vibration characteristics of single-walled carbon nanotubes (SWCNTs) using multi-scale analysis. Atomistic finite element method (AFEM) is one such multi-scale technique where sequential mode is used to transfer information between two length scales to model and simulate the nanostructures at continuum level. This method is used to investigate the vibration characteristics of SWCNTs. Open- and capped-end armchair and zigzag nanotubes are considered with clamped-free and clamped–clamped boundary conditions. The dependence of vibration characteristic of SWCNTs on their length, diameter and atomic structure is also demonstrated. The body interatomic Tersoff–Brenner (TB) potential is used to represent the energy between two carbon atoms. Based on the TB potential, a new set of force constant parameters is established for carbon nanotubes and presented in this paper. Molecular and structural mechanics analogy is used to find the equivalent geometric and elastic properties of the space frame element to represent the carbon–carbon bond. To validate the vibration results of AFEM incorporating the proposed new set of force constants, molecular dynamics simulation is also carried out on the same structure of carbon nanotube, and it is found that they are in good agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poncharal P., Wang Z.L., Ugarte D., De Heer W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Article  Google Scholar 

  2. Shen L., Li J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B Condensed Matter Mater. Phys. 69(4), 454141–4541410 (2004)

    Google Scholar 

  3. Shen, L., Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B Condensed Matter Mater. Phys. 71(3) (2005). doi:10.1103/PhysRevB.71.035412

  4. Shen, L., Li, J.: Equilibrium structure and strain energy of single-walled carbon nanotubes. Phys. Rev. B Condensed Matter Mater. Phys. 71(16) (2005). doi:10.1103/PhysRevB.71.165427

  5. Wang C.M., Tan V.B.C., Zhang Y.Y.: Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294(4), 1060–1072 (2006)

    Article  Google Scholar 

  6. Sun C., Liu K.: Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Commun. 143(4–5), 202–207 (2007)

    Article  Google Scholar 

  7. Gupta S.S., Batra R.C.: Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput. Mater. Sci. 43(4), 715–723 (2008)

    Article  Google Scholar 

  8. Georgantzinos S.K., Giannopoulos G.I., Anifantis N.K.: An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Comput. Mech. 43(6), 731–741 (2009)

    Article  MATH  Google Scholar 

  9. Georgantzinos S.K., Anifantis N.K.: Vibration analysis of multi-walled carbon nanotubes using a spring-mass based finite element model. Comput. Mater. Sci. 47(1), 168–177 (2009)

    Article  Google Scholar 

  10. Ke L.L., Xiang Y., Yang J., Kitipornchai S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47(2), 409–417 (2009)

    Article  Google Scholar 

  11. Sakhaee-Pour A., Ahmadian M.T., Vafai A.: Vibrational analysis of single-walled carbon nanotubes using beam element. Thin-Walled Struct. 47(6-7), 646–652 (2009)

    Article  Google Scholar 

  12. Chowdhury R., Adhikari S., Wang C.Y., Scarpa F.: A molecular mechanics approach for the vibration of single-walled carbon nanotubes. Comput. Mater. Sci. 48(4), 730–735 (2010)

    Article  Google Scholar 

  13. Arghavan S., Singh A.V.: On the vibrations of single-walled carbon nanotubes. J. Sound Vib. 330(13), 3102–3122 (2011)

    Article  Google Scholar 

  14. Aydogdu M.: Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 43, 34–40 (2012)

    Article  Google Scholar 

  15. Ansari R., Gholami R., Rouhi H.: Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos. B Eng. 43(8), 2985–2989 (2012)

    Article  Google Scholar 

  16. Ghavanloo E., Fazelzadeh S.A.: Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 36(10), 4988–5000 (2012)

    Article  Google Scholar 

  17. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M. Jr, Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  Google Scholar 

  18. Tersoff J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61(25), 2879–2882 (1988)

    Article  Google Scholar 

  19. Brenner D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990)

    Article  Google Scholar 

  20. Lee J.H., Lee B.S.: Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012). doi:10.1016/j.commatsci.2011.06.041

    Article  Google Scholar 

  21. Li C., Chou T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  MATH  Google Scholar 

  22. Rappé A.K., Casewit C.J., Colwell K.S., Goddard Iii W.A., Goddard Iii W.A., Goddard Iii W.A.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  23. Chang T., Gao H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51(6), 1059–1074 (2003)

    Article  MATH  Google Scholar 

  24. Gelin B.R.: Molecular Modeling of Polymer Structures and Properties. Hanser/Gardner Publishers, Cincinnati (1994)

    Google Scholar 

  25. Gajbhiye S.O., Singh S.P.: Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48(14), 1–16 (2015). doi:10.1088/0022-3727/48/14/145305

    Article  Google Scholar 

  26. Ye L.H., Liu B.G., Wang D.S.: Ab initio molecular dynamics study on small carbon nanotubes. Chin. Phys. Lett. 18(11), 1496–1499 (2001)

    Article  Google Scholar 

  27. Scarpa F., Adhikari S.: A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D Appl. Phys. 41(8), 1–5 (2008)

    Article  Google Scholar 

  28. Gajbhiye S.O., Singh S.P.: Multiscale analysis approach to find the dynamic characteristics of graphene sheet. Appl. Mech. Mater. 592(594), 1119–1124 (2014). doi:10.4028/www.scientific.net/AMM.592-594.1119

    Article  Google Scholar 

  29. Gajbhiye, S.O., Singh, S.P.: A review of methodologies to multiscale modeling of nanostructures and nanocomposites. In: International Conference on Functional Materials (ICFM-2014), Materials Science Centre, Indian Institute of Technology, Kharagpur, India, p. 189. 5–7 Feb (2014)

  30. Lu X., Hu Z.: Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Compos. B Eng. 43(4), 1902–1913 (2012). doi:10.1016/j.compositesb.2012.02.002

    Article  Google Scholar 

  31. Fakhrabadi M.M.S., Samadzadeh M., Rastgoo A., Yazdi M.H., Mashhadi M.M.: Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E Low-dimens. Syst. Nanostruct. 44(3), 565–578 (2011). doi:10.1016/j.physe.2011.10.004

    Article  Google Scholar 

  32. Sun H., Ren P., Fried J.R.: The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8(1–2), 229–246 (1998). doi:10.1016/S1089-3156(98)00042-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Gajbhiye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajbhiye, S.O., Singh, S.P. Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff–Brenner potential. Acta Mech 226, 3565–3586 (2015). https://doi.org/10.1007/s00707-015-1390-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1390-7

Keywords

Navigation