Skip to main content
Log in

Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The spectral element method (SEM) is extended to study the vibration band-gap characteristics of periodic rigid frame structures composed of Timoshenko beams. The tensional and bending elements are taken into account for deducing the element stiffness matrices which are assembled to establish the spectral equations of motion of the whole rigid frame structure. The validity and accuracy of the natural frequencies and frequency responses obtained by the SEM are verified by comparing the present numerical results with the results of the experiments and the finite element method (FEM). The results indicate that the SEM is very suitable for analyzing the dynamic response and vibration band-gap properties of the periodic frame structures, and the SEM is more effective and accurate than the FEM, especially for the high frequency responses. The influences of the structural and material parameters on the vibration band-gaps are analyzed, and some new configurations of the periodic rigid frame structures are designed to obtain more and wider frequency band-gaps and consequently to improve the structural vibration isolation capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doyle J.F., Farris T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990)

    Google Scholar 

  2. Doyle J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, New York (1997)

    Book  MATH  Google Scholar 

  3. Banerjee J., Williams F.: Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams. Int. J. Numer. Methods Eng. 21, 2289–2302 (2005)

    Article  MATH  Google Scholar 

  4. Park I., Lee U.: Dynamic analysis of smart composite beams by using the frequency-domain spectral element method. J. Mech. Sci. Technol. 26, 2511–2521 (2012)

    Article  Google Scholar 

  5. Lee U., Jang I.: Spectral element model for axially loaded bending–shear–torsion coupled composite Timoshenko beams. Compos. Struct. 92, 2860–2870 (2010)

    Article  Google Scholar 

  6. Lee U., Kim D., Park I.: Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method. J. Sound Vib. 332, 1585–1609 (2013)

    Article  Google Scholar 

  7. Song Y., Kim S., Park I., Lee U.: Dynamics of two-layer smart composite Timoshenko beams: frequency domain spectral element analysis. Thin-Walled Struct. 89, 84–92 (2015)

    Article  Google Scholar 

  8. Azizi N., Saadatpoura M.M., Mahzoonb M.: Using spectral element method for analyzing continuous beams and bridges subjected to a moving load. Appl. Math. Model. 36, 3580–3592 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wen S.R., Lu N.L., Wu Z.J.: Dynamic property analysis of the space-frame structure using the spectral element method. Waves Random Complex Media 24, 404–420 (2014)

    Article  Google Scholar 

  10. Sun H., Zhou L.: Analysis of damage characteristics for cracked composite structures using spectral element method. J. Vibroeng. 14, 430–439 (2012)

    Google Scholar 

  11. Feng R.X., Liu K.X.: Tuning the band-gap of phononic crystals with an initial stress. Phys. B 407, 2032–2036 (2012)

    Article  Google Scholar 

  12. Liu L., Zhao J., Pan Y., Bonello B., Zhong Z.: Theoretical study of SH-wave propagation in periodically-layered piezomagnetic structure. Int. J. Mech. Sci. 85, 45–54 (2014)

    Article  Google Scholar 

  13. Chen T., Wang L.: Suppression of bending waves in a periodic beam with Timoshenko beam theory. Acta Mech. Solida Sin. 26, 177–188 (2013)

    Article  Google Scholar 

  14. Pang Y., Gao J.S., Liu J.X.: SH wave propagation in magnetic–electric periodically layered plates. Ultrasonics 54, 1341–1349 (2014)

    Article  Google Scholar 

  15. Bian Z., Peng W., Song J.: Thermal tuning of band structures in a one-dimensional phononic crystal. J. Appl. Mech. 81, 041008 (2014)

    Article  Google Scholar 

  16. Lan M., Wei P.J.: Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech. 225, 1779–1794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun J.Z., Wei P.J.: Band gaps of 2D phononic crystal with imperfect interface. Mech. Adv. Mater. Struct. 21, 107–116 (2014)

    Article  Google Scholar 

  18. Huang Y., Zhang C.L., Chen W.Q.: Elastic wave band structures and defect states in a periodically corrugated piezoelectric plate. J. Appl. Mech. 81, 081005 (2014)

    Article  Google Scholar 

  19. Huang Y., Zhang C.L., Chen W.Q.: Tuning band structures of two-dimensional phononic crystals with biasing fields. J. Appl. Mech. 81, 091008 (2014)

    Article  Google Scholar 

  20. Schaeffer M., Ruzzene M.: Wave propagation in reconfigurable magneto-elastic Kagome lattice structures. J. Appl. Phys. 117, 194903 (2015)

    Article  Google Scholar 

  21. Wang Y.Z., Li F.M., Kishimoto K., Wang Y.S., Huang W.H.: Wave localization in randomly disordered layered three-component phononic crystals with thermal effects. Arch. Appl. Mech. 80, 629–640 (2010)

    Article  MATH  Google Scholar 

  22. Farzbod F., Leamy M.J.: Analysis of Bloch’s method and the propagation technique in periodic structures. J. Vib. Acoust. 133, 031010 (2011)

    Article  Google Scholar 

  23. Piliposyan D.G., Ghazaryan K.B., Piliposian G.T.: Shear Bloch waves and coupled phonon–polariton in periodic piezoelectric waveguides. Ultrasonics 54, 644–654 (2014)

    Article  Google Scholar 

  24. Degraeve S., Granger C., Dubus B., Vasseur J.O., Pham Thi M., Hladky-Hennion A.C.: Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions. J. Appl. Phys. 115, 194508 (2014)

    Article  Google Scholar 

  25. Liu Y., Sun X.Z., Chen S.T.: Band gap structures in two-dimensional super porous phononic crystals. Ultrasonics 53, 518–524 (2013)

    Article  Google Scholar 

  26. Wang K., Liu Y., Yang Q.S.: Tuning of band structures in porous phononic crystals by grading design of cells. Ultrasonics 61, 25–32 (2015)

    Article  Google Scholar 

  27. Li F.L., Wang Y.S., Zhang C., Yu G.L.: Bandgap calculations of two-dimensional solid fluid phononic crystals with the boundary element method. Wave Motion 50, 525–541 (2013)

    Article  MathSciNet  Google Scholar 

  28. Li F.L., Wang Y.S., Zhang C., Yu G.L.: Boundary element method for bandgap calculations of two-dimensional solid phononic crystals. Eng. Anal. Bound. Elem. 37, 225–235 (2013)

    Article  MathSciNet  Google Scholar 

  29. Tanaka Y., Yano T., Tamura S.: Surface guided waves in two-dimensional phononic crystals. Wave Motion 44, 501–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Djafari-Rouhani B., Pennec Y., Larabi H., Vasseur J., Hladky A.: Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate. J. Acoust. Soc. Am. 123, 3041 (2008)

    Article  Google Scholar 

  31. Wu Z.J., Li F.M., Wang Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)

    Article  Google Scholar 

  32. Wu Z.J., Li F.M., Wang Y.Z.: Study on vibration characteristics in periodic plate structures using the spectral element method. Acta Mech. 224, 1089–1101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu Z.J., Li F.M., Zhang C.: Vibration properties of piezoelectric square lattice structures. Mech. Res. Commun. 62, 123–131 (2014)

    Article  MathSciNet  Google Scholar 

  34. Wu Z.J., Li F.M., Zhang C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Article  MathSciNet  Google Scholar 

  35. Lee U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Book  MATH  Google Scholar 

  36. Wang G., Wereley N.M.: Spectral finite element analysis of sandwich beams with passive constrained layer damping. J. Vib. Acoust. 124, 376–386 (2002)

    Article  Google Scholar 

  37. Chakraborty A., Gopalakrishinan S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003)

    Article  MATH  Google Scholar 

  38. Lee U., Hyukjin O.: Evaluation of the structural properties of single-walled carbon nanotubes using a dynamic continuum modeling method. Mechanics of Advanced Materials and Structures 15, 79–87 (2008)

    Article  Google Scholar 

  39. Zak A.: A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elem. Anal. Design 45, 650–658 (2009)

    Article  Google Scholar 

  40. Zhu C.Y., Qin G.L., Zhang J.Z.: Implicit Chebyshev spectral element method for acoustics wave equations. Finite Elem. Anal. Design 47, 184–194 (2011)

    Article  MathSciNet  Google Scholar 

  41. Park Y., Hyun S.: Structural analysis on Kagome trusses under dynamic external loadings. J. Korean Phys. Soc. 60, 349–355 (2012)

    Article  Google Scholar 

  42. Hong M., Park I., Lee U.: Dynamics and waves characteristics of the FGM axial bars by using spectral element method. Compos. Struct. 107, 585–593 (2014)

    Article  Google Scholar 

  43. Barbarino A., Dulla S., Mund E.H., Ravetto P.: Assessment of the performance of the spectral element method applied to neutron transport problems. Ann. Nuclear Energy 65, 190–198 (2014)

    Article  Google Scholar 

  44. Mei, C., Sha, H.: Analytical and experimental study of vibrations in simple spatial structures. J. Vib. Control. (2015). doi:10.1177/1077546314565807

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, SL., Li, FM. & Zhang, C. Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures. Acta Mech 227, 1653–1669 (2016). https://doi.org/10.1007/s00707-016-1587-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1587-4

Keywords

Navigation