Skip to main content
Log in

Study on vibration characteristics in periodic plate structures using the spectral element method

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Periodic structures have great scientific potential because of their superior structural dynamic properties. The aim of this study is to analyze the dynamic behavior of periodic plate structures using the spectral element method (SEM). The spectral equations of the plate elements with two parallel sides that are simply supported are established. Then, the spectral dynamic stiffness matrix of the whole periodic plate structure is assembled. The frequency responses are obtained by the calculation of the spectral equations to illustrate the characteristics of the band gaps. From the results, it is seen that the SEM can be effectively applied to study the vibration properties of the periodic structures. Compared with the results calculated by the finite element method, it can be observed that more accurate results in high-frequency ranges can be achieved by the SEM. These results indicate that the band gap characteristics depend on both the material properties and unit cell numbers. Furthermore, the effects of the structure damping and type on the frequency responses are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigalas M., Economou E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)

    Article  Google Scholar 

  2. Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  3. Zhang X.D., Liu Z.Y.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341–343 (2004)

    Article  Google Scholar 

  4. Feng R.X., Liu K.X.: Tuning the band-gap of phononic crystals with an initial stress. Phys. B 407, 2032–2036 (2012)

    Article  Google Scholar 

  5. Narisetti R.K., Leamy M.J., Ruzzene M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132, 031001 (2010)

    Article  Google Scholar 

  6. Narisetti R.K., Ruzzene M., Leamy M.J.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 133, 061020 (2011)

    Article  Google Scholar 

  7. Farzbod F., Leamy M.J.: Analysis of Bloch’s method in structures with energy dissipation. J. Vib. Acoust. 133, 051010 (2011)

    Article  Google Scholar 

  8. Wu F.G., Liu Z.Y., Liu Y.Y.: Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. J. Phys. D Appl. Phys. 35, 162–165 (2002)

    Article  Google Scholar 

  9. Sigalas M.M., Economou E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  10. Xu Z.L., Wu F.G., Guo Z.N.: Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals. Phys. Lett. A 376, 2256–2263 (2012)

    Article  Google Scholar 

  11. Vasseur J.O., Deymier P.A., Chenni B., Djafari-Rouhani B., Dobrzynski L., Prevost D.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)

    Article  Google Scholar 

  12. Wang G., Wen J.H., Wen X.S.: Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Phys. Rev. B 71, 104302 (2005)

    Article  Google Scholar 

  13. Psarobas I.E., Stefanou N., Modinos A.: Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B 62, 278–291 (2000)

    Article  Google Scholar 

  14. Chen H.Y., Luo X.D., Ma H.R.: Scattering of elastic waves by elastic spheres in a NaCl-type phononic crystal. Phys. Rev. B 75, 024306 (2007)

    Article  Google Scholar 

  15. Cetinkaya C., Vakakis A.F.: Transient axisymmetric stress wave propagation in weakly coupled layered structures. J. Sound Vib. 194, 389–416 (1996)

    Article  Google Scholar 

  16. Li F.M., Wang Y.S.: Study on wave localization in disordered periodic layered piezoelectric composite structures. Int. J. Solids Struct. 42, 6457–6474 (2005)

    Article  MATH  Google Scholar 

  17. Sigalas M.M., Economou E.N.: Elastic waves in plates with periodically placed inclusions. J. Appl. Phys. 75, 2845–2850 (1994)

    Article  Google Scholar 

  18. Kushwaha M.S., Halevi P.: Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Appl. Phys. Lett. 69, 31–33 (1996)

    Article  Google Scholar 

  19. Wang Y.Z., Li F.M., Huang W.H., Wang Y.S.: Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys. Condens. Matter 19, 496204 (2007)

    Article  Google Scholar 

  20. Cao Y.J., Hou Z.L., Liu Y.Y.: Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun. 132, 539–543 (2004)

    Article  Google Scholar 

  21. Sigalas M.M., García N.: Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 87, 3122–3125 (2000)

    Article  Google Scholar 

  22. Sun J.H., Wu T.T.: Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Phys. Rev. B 76, 104304 (2007)

    Article  Google Scholar 

  23. Liu Y., Gao L.T.: Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Commun. 144, 89–93 (2007)

    Article  Google Scholar 

  24. Yan Z.Z., Wang Y.S.: Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B 74, 224303 (2006)

    Article  Google Scholar 

  25. Yan Z.Z., Wang Y.S.: Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B 78, 094306 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zhen N., Li F.L., Wang Y.S., Zhang C.: Bandgap calculation for plane mixed waves in 2D phononic crystals based on Dirichlte-to-Neumann map. Acta Mech. Sin. 28, 1143–1153 (2012)

    Article  MathSciNet  Google Scholar 

  27. Li F.L., Wang Y.S.: Application of Dirichlet-to-Neumann map to calculation of band gaps for scalar waves in two-dimensional phononic crystals. Acta Acust. United Acust. 97, 284–290 (2011)

    Article  Google Scholar 

  28. Li F.L., Wang Y.S., Zhang C.: Boundary element method for bandgap computation of phononic crystals. Opt. Commun. 285, 527–532 (2012)

    Article  Google Scholar 

  29. Doyle J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, New York (1997)

    MATH  Google Scholar 

  30. Lee U.: Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 8, 357–366 (2001)

    Google Scholar 

  31. Lee U.: Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 20, 587–592 (1998)

    Article  Google Scholar 

  32. Banerjee J.R.: Dynamic stiffness formulation for structural elements: a general approach. Comput. Struct. 63, 101–103 (1997)

    Article  MATH  Google Scholar 

  33. Banerjee J.R.: Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J. Sound Vib. 270, 379–401 (2004)

    Article  MATH  Google Scholar 

  34. Banerjee J.R., Su H., Jayatunga C.: A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings. Comput. Struct. 86, 573–579 (2008)

    Article  Google Scholar 

  35. Doyle J.F., Farris T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Model Anal. 5, 99–107 (1990)

    Google Scholar 

  36. Żak A.: A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elem. Anal. Des. 45, 650–658 (2009)

    Article  Google Scholar 

  37. Zhu C.Y., Qin G.L., Zhang J.Z.: Implicit Chebyshev spectral element method for acoustics wave equations. Finite Elem. Anal. Des. 47, 184–194 (2011)

    Article  MathSciNet  Google Scholar 

  38. Lee U., Kim J.: Spectral element modeling for the beams treated with active constrained layer damping. Int. J. Solids Struct. 38, 5679–5702 (2001)

    Article  MATH  Google Scholar 

  39. Banerjee J.R., Williams F.W.: Free vibration of composite beams—an exact method using symbolic computation. J. Aircr. 32, 636–642 (1995)

    Article  Google Scholar 

  40. Lee U., Oh H.: Evaluation of the structural properties of single-walled carbon nanotubes using a dynamic continuum modeling method. Mech. Adv. Mater. Struct. 15, 79–87 (2008)

    Article  Google Scholar 

  41. Liu T., Sen M.K., Hu T.Y., De Basabe J.D., Li L.: Dispersion analysis of the spectral element method using a triangular mesh. Wave Motion 49, 474–483 (2012)

    Article  MathSciNet  Google Scholar 

  42. Xing Y.F., Liu B.: New exact solutions for free vibrations of rectangular thin plates by symplectic dual method. Acta Mech. Sin. 25, 265–270 (2009)

    Article  MathSciNet  Google Scholar 

  43. Xing Y.F., Liu B.: Exact solutions for the free in-plane vibrations of rectangular plates. Int. J. Mech. Sci. 51, 246–255 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, ZJ., Li, FM. & Wang, YZ. Study on vibration characteristics in periodic plate structures using the spectral element method. Acta Mech 224, 1089–1101 (2013). https://doi.org/10.1007/s00707-012-0798-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0798-6

Keywords

Navigation