Skip to main content
Log in

Wave localization in randomly disordered layered three-component phononic crystals with thermal effects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the propagation and localization of elastic waves in randomly disordered layered three-component phononic crystals with thermal effects are studied. The transfer matrix is obtained by applying the continuity conditions between three consecutive sub-cells. Based on the transfer matrix method and Bloch theory, the expressions of the localization factor and dispersion relation are presented. The relation between the localization factors and dispersion curves is discussed. Numerical simulations are performed to investigate the influences of the incident angle on band structures of ordered phononic crystals. For the randomly disordered ones, disorders of structural thickness ratios and Lamé constants are considered. The incident angles, disorder degrees, thickness ratios, Lamé constants and temperature changes have prominent effects on wave localization phenomena in three-component systems. Furthermore, it can be observed that stopbands locate in very low-frequency regions. The localization factor is an effective way to investigate randomly disordered phononic crystals in which the band structure cannot be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigalas M., Economou E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commut. 86, 141–143 (1993)

    Article  Google Scholar 

  2. Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  3. Tanaka Y., Yano T., Tamura S.: Surface guided waves in two-dimensional phononic crystals. Wave Motion 44, 501–512 (2007)

    Article  MathSciNet  Google Scholar 

  4. Wu T.T., Wu L.C., Huang Z.G.: Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. J. Appl. Phys. 97, 094916 (2005)

    Article  Google Scholar 

  5. Liu Y., Su J.Y., Gao L.T.: The influence of the micro-topology on the phononic band gaps in 2D porous phononic crystals. Phys. Lett. A 372, 6784–6789 (2008)

    Article  Google Scholar 

  6. Sabina F.J., Movchan A.B.: Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals. Acta Mech. Sin. 25, 95–99 (2009)

    Article  MathSciNet  Google Scholar 

  7. Sesion P.D. Jr, Albuquerque E.L., Chesman C., Freire V.N.: Acoustic phonon transmission spectra in piezoelectric AlN/GaN Fibonacci phononic crystals. Eur. Phys. J. B 58, 379–387 (2007)

    Article  Google Scholar 

  8. Sepehrinia R., Bahraminasab A., Sahimi M., Rahimi Tabar M.R.: Dynamic renormalization group analysis of propagation of elastic waves in two-dimensional heterogeneous media. Phys. Rev. B 77, 014203 (2008)

    Article  Google Scholar 

  9. Wang Z.G., Lee S.H., Kim C.K., Park C.M., Nahm K., Nikitov S.A.: Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. J Appl. Phys. 103, 064907 (2008)

    Article  Google Scholar 

  10. Sutter-Widmer D., Neves P., Itten P., Sainidou R., Steurer W.: Distinct band gaps and isotropy combined in icosahedral band gap materials. Appl. Phys. Lett. 92, 073308 (2008)

    Article  Google Scholar 

  11. Bertoldi K., Boyce M.C., Deschanel S., Prange S.M., Mullin T.: Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. J. Mech. Phys. Solids 56, 2642–2668 (2008)

    Article  MATH  Google Scholar 

  12. Norris R.C., Hamel J.S., Nadeau P.: Phononic band gap crystals with periodic fractal inclusions: Theoretical study using numerical analysis. J. Appl. Phys. 103, 104908 (2008)

    Article  Google Scholar 

  13. Gonella S., To A.C., Liu W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2009)

    Article  MATH  Google Scholar 

  14. Liu Z.Y., Zhang X.X., Mao Y.W., Zhu Y.Y., Zhang Z.Y., Chan C.T., Sheng P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  15. Liu Z.Y., Chan C.T., Sheng P.: Three-component elastic wave band-gap material. Phys. Rev. B 65, 165116 (2002)

    Article  Google Scholar 

  16. Zhang X., Liu Y.Y., Wu F.G., Liu Z.Y.: Large two-dimensional band gaps in three-component phononic crystals. Phys. Lett. A 317, 144–149 (2003)

    Article  Google Scholar 

  17. Zhang S., Cheng J.C.: Existence of broad acoustic bandgaps in three-component composite. Phys. Rev. B 68, 245101 (2003)

    Article  Google Scholar 

  18. Chen J.J., Chan H.L.W., Cheng J.C.: Large one-dimensional band gaps in three-component phononic crystals plates. Phys. Lett. A 366, 493–496 (2007)

    Article  Google Scholar 

  19. Zhao H.G., Liu Y.Z., Wen J.H., Yu D.L., Wen X.S.: Tri-component phononic crystals for underwater anechoic coatings. Phys. Lett. A 367, 224–232 (2007)

    Article  Google Scholar 

  20. Brekhovskikh L.M.: Waves in Layered Media. Academic Press, New York (1960)

    Google Scholar 

  21. Kissel G.J.: Localization factor for multichannel disordered systems. Phys. Rev. A 44, 1008–1014 (1991)

    Article  Google Scholar 

  22. Castanier M.P., Pierre C.: Lyapunov exponents and localization phenomena in multi-coupled nearly periodic systems. J. Sound Vib. 183, 493–515 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xie W.C.: Buckling mode localization in rib-stiffened plates with randomly misplaced stiffeners. Comput. Struct. 67, 175–189 (1998)

    Article  MATH  Google Scholar 

  24. Li F.M., Wang Y.S.: Study on wave localization in disordered periodic layered piezoelectric composite structures. Int. J. Solids Struct. 42, 6457–6474 (2005)

    Article  MATH  Google Scholar 

  25. Li F.M., Xu M.Q., Wang Y.S.: Frequency-dependent localization length of SH-wave in randomly disordered piezoelectric phononic crystals. Solid State Commun. 141, 296–301 (2007)

    Article  Google Scholar 

  26. Chen A.L., Wang Y.S.: Study on band gaps of elastic waves propagating in one–dimensional disordered phononic crystals. Physica B 392, 369–378 (2007)

    Article  Google Scholar 

  27. Rose J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, London (1999)

    Google Scholar 

  28. Shang F.L., Wang Z.K., Li Z.H.: An exact analysis of thermal buckling of piezoelectric laminated plates. Acta Mech. Solida Sin. 10, 95–107 (1997)

    Google Scholar 

  29. Kobayashi F., Biwa S., Ohno N.: Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays. Int. J. Solids Struct. 41, 7361–7375 (2004)

    Article  MATH  Google Scholar 

  30. Wang G., Yu D.L., Wen J.H., Liu Y.Z., Wen X.S.: One-dimensional phononic crystals with locally resonant structures. Phys. Lett. A 327, 512–521 (2004)

    Article  MATH  Google Scholar 

  31. Bouzit D., Pierre C.: Wave localization and conversion phenomena in multi-coupled multi-span beams. Chaos Solitons Fractals 11, 1575–1596 (2000)

    Article  MATH  Google Scholar 

  32. Bendiksen O.O.: Localization phenomena in structural dynamics. Chaos Solitons Fractals 11, 1621–1660 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wolf A., Swift J.B., Swinney H.L., Vastano J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dong K., Wang X.: Influence of large deformation and rotary inertia on wave propagation in piezoelectric cylindrically laminated shells in thermal environment. Int. J. Solids Struct. 43, 1710–1726 (2006)

    Article  MATH  Google Scholar 

  35. Hisekom M., Delsanto P.P., Leung A.C., Matic P.: Elastic wave propagation in locally resonant sonic material: comparison between local interaction simulation approach and modal analysis. J. Appl. Phys. 99, 124912 (2006)

    Article  Google Scholar 

  36. Wang X.Y., Geng H.B., He S.Y., Pokhyl Y.O., Koval K.V.: Effect of thermal expansion coefficient on the stress distribution in solar panel. Int. J. Adhes. Adhes. 27, 288–297 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Ze Wang or Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YZ., Li, FM., Kishimoto, K. et al. Wave localization in randomly disordered layered three-component phononic crystals with thermal effects. Arch Appl Mech 80, 629–640 (2010). https://doi.org/10.1007/s00419-009-0329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0329-7

Keywords

Navigation