Skip to main content
Log in

Experimental study of embedded and non-embedded ordered granular chains under impulsive excitation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Experimental pulse transmission in impulsively loaded, homogeneous, and dimer granular chains, optionally embedded in a viscoelastic matrix, is studied. All tested chains are composed of spherical elastic beads of common radius. Homogeneous chains were composed of granules with equal mass, whereas dimer chains had alternating ‘heavy’ and ‘light’ granules with different masses. These media are strongly nonlinear due to Hertzian interactions between adjacent beads under compressive loads, and separations and collisions between them in the absence of compression. A series of experimental tests was performed to study primary pulse transmission in the non-embedded chains, and assess the effect of the surrounding viscoelastic matrix on pulse transmission in the embedded ones. For the case of dimer chains, the effect of mass inhomogeneity on pulse attenuation caused by scattering at the interfaces between adjacent beads is studied. In total, two embedded dimer chains, as well as an embedded homogeneous one, were manufactured and tested, and a previous theoretical model is used to compare theoretical predictions to experimental measurements. Whereas one of the non-embedded dimer chains differs from the others in that its light beads are hollow and so its experimental responses are not captured well by our theoretical model, for the other embedded and non-embedded chains, the theoretical predictions match remarkably well with the experimental measurements, despite the complexity in the acoustics induced by the surrounding matrix, and the conceptual simplicity of the theoretical model. The results of this work contribute to the development of practical acoustic metamaterials incorporating embedded granular media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesterenko V.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  2. Doney R., Sen S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)

    Article  Google Scholar 

  3. Fraternali F., Porter M.A., Daraio C.: Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 (2009)

    Article  Google Scholar 

  4. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96, 058002 (2006)

    Article  Google Scholar 

  5. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F., Peeters M., Kerschen G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63(3), 359–385 (2011)

    Article  MathSciNet  Google Scholar 

  6. Hasan M.A., Remick K., Cho S., Vakakis A.F., McFarland D.M., Kriven W.M.: Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granul. Matter 17, 49–72 (2015)

    Article  Google Scholar 

  7. Coste C., Gilles B.: Sound propagation in a constrained lattice of beads: high-frequency behavior and dispersion relation. Phys. Rev. E 77, 021302 (2008)

    Article  Google Scholar 

  8. Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. In: Proceedings of National Academy of Science. www.pnas.org/cgi/doi/10.1073/pnas.1001514107 (2010)

  9. Donahue C.M., Anzel P.W.J., Bonanomi L., Keller T.A., Daraio C.: Experimental realization of a nonlinear acoustic lens with a tunable focus. Appl. Phys. Lett. 104, 014103 (2014)

    Article  Google Scholar 

  10. Starosvetsky Y., Hasan M.A., Vakakis A.F., Manevitch L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72, 337–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leonard A., Fraternali F., Daraio C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53, 327–337 (2013)

    Article  Google Scholar 

  12. Manjunath M., Awasthi A.P., Geubelle P.H.: Plane wave propagation in 2D and 3D monodisperse periodic granular media. Granul. Matter 16, 141–150 (2014)

    Article  Google Scholar 

  13. Jayaprakash K.R., Vakakis A.F., Starosvetsky Y.: Solitary waves in a general class of granular dimer chains. J. Appl. Phys. 112, 034908 (2012)

    Article  Google Scholar 

  14. Potekin P., Jayaprakash K., McFarland D.M., Remick K., Bergman L., Vakakis A.: Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains. Exp. Mech. 53(5), 861–870 (2013)

    Article  Google Scholar 

  15. Job S., Melo F., Sokolow A., Sen S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  Google Scholar 

  16. Sen S., Hong J., Bang J., Avalos E., Doney R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  17. Boechler N., Theocharis G., Daraio C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011)

    Article  Google Scholar 

  18. Boechler N., Theocharis G., Job S., Kevrekidis P.G., Porter M.A., Daraio C.: Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104, 244302 (2010)

    Article  Google Scholar 

  19. Hasan M.A., Starosvetsky Y., Vakakis A.F., Manevitch L.I.: Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau–Zener effect in coupled granular chains. Phys. D 252, 46–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasan M.A., Cho S., Remick K., Vakakis A.F., McFarland D.M., Kriven W.M.: Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling. Int. J. Solids Struct. 50, 3207–3224 (2013)

    Article  Google Scholar 

  21. Zhang Y., Hasan M.A., Starosvetsky Y., McFarland D.M., Vakakis A.F.: Nonlinear mixed solitary—shear waves and pulse equi-partition in a granular network. Phys. D 291, 45–61 (2015)

    Article  Google Scholar 

  22. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F., Gendelman O.V.: Nonlinear resonances leading to strong pulse attenuation in granular dimer chains. J. Nonlinear Sci. 23, 363–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sokolow A., Bittle E.G., Sen S.: Solitary wave train formation in Hertzian chains. Europhys. Lett. 77(2), 24002 (2007)

    Article  Google Scholar 

  24. Job S., Melo F., Sokolow A., Sen S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  MATH  Google Scholar 

  25. Pöschel T., Schwager T.: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. Phys. Rev. E 78, 051304 (2008)

    Article  Google Scholar 

  26. Carretero-Gonzalez R., Khatri D., Porter M.A., Kevrekidis P.G., Daraio C.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102, 024102 (2009)

    Article  Google Scholar 

  27. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83, 036606 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ngo D., Griffiths S., Khatri D., Daraio C.: Highly nonlinear solitary waves in chains of hollow spherical particles. Granul. Matter 15, 149–155 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael McFarland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avagyan, A., Chiao, D., Dostart, N. et al. Experimental study of embedded and non-embedded ordered granular chains under impulsive excitation. Acta Mech 227, 2511–2527 (2016). https://doi.org/10.1007/s00707-016-1564-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1564-y

Keywords

Navigation