Skip to main content
Log in

Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5′ and 3′ termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset generated during the current study is available in the GenBank database (accession no. MT269666).

References

  1. Qin XJ, Ni W, Chen CX et al (2018) Seeing the light: shifting from wild rhizomes to extraction of active ingredients from above-ground parts of Paris polyphylla var. yunnanensis. J Ethnopharmacol 224:134–139

    Article  CAS  Google Scholar 

  2. Zhou N, Xu L, Park SM et al (2021) Genetic diversity, chemical components, and property of biomass Paris polyphylla var. yunnanensis. Front Bioeng Biotechnol 9:713860

    Article  Google Scholar 

  3. Lan P, Zhao J, Zhou Y et al (2018) Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus. Arch Virol 163:787

    Article  CAS  Google Scholar 

  4. Dong JH, Ding M, Fang Q et al (2007) Molecular identifcation of a Potexvirus isolate infecting Pairs polyphylla var. Yunnanensis and analysis of 3’terminal sequence. Acta Phytopathol Sin 37:237–241

    Google Scholar 

  5. Wen GS, Yang LY, Anane RF et al (2019) First report of Pepper mild mottle virus in Pairs polyphylla var. Yunnanensis in China. Plant Dis 103:3289

    Article  Google Scholar 

  6. Chen L, Anane RF, Wang Z et al (2021) Whole-genome sequence analysis of paris virus 1: a novel member of the genus Potyvirus infecting Paris polyphylla var. yunnanensis. Arch Virol 165:985–988

    Article  Google Scholar 

  7. Chen ZL, Anane RF, Wang Z et al (2021) Complete genome sequence analysis of a novel coguvirus isolated from Paris polyphylla var. yunnanensis. Arch Virol 166:2045–2050

    Article  CAS  Google Scholar 

  8. Chen L, Anane RF, Wang Z et al (2021) Characterization of a novel Tombusviridae species isolated from Paris polyphylla var. yunnanensis. Arch Virol. https://doi.org/10.1007/s00705-021-05191-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Shang H, Yang H et al (2017) A mitovirus isolated from the phytopathogenic fungus Alternaria brassicicola. Arch Virol 162:2869–2874

    Article  CAS  Google Scholar 

  10. Zhang T, Li W, Chen H, Yu H (2015) Full genome sequence of a putative novel mitovirus isolated from Rhizoctonia cerealis. Arch Virol 160:1815–1818

    Article  CAS  Google Scholar 

  11. Hillman BI, Cai G (2013) Chapter six-the family Narnaviridae: simplest of RNA viruses. Adv Virus Res 86:149–176

    Article  Google Scholar 

  12. Deng F, Boland GJ (2006) Attenuation of virulence in Sclerotinia homoeocarpa during storage is associated with latent infection by Ophiostoma mitovirus 3a. Eur J Plant Pathol 114:127–137

    Article  Google Scholar 

  13. Sahin E, Akata I (2019) Complete genome sequence of a novel mitovirus from the ectomycorrhizal fungus Geopora sumneriana. Arch Virol 164:2853–2857

    Article  CAS  Google Scholar 

  14. Cole TE, Hong Y, Brasier CM et al (2000) Detection of an RNA-dependent RNA polymerase in mitochondria from a mitovirus-infected isolate of the Dutch Elm disease fungus, Ophiostoma novo-ulmi. Virology 268:239–243

    Article  CAS  Google Scholar 

  15. Hong Y, Cole TE, Brasier CM et al (1998) Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 246:158–169

    Article  CAS  Google Scholar 

  16. Hong Y, Dover SL, Cole TE et al (1999) Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. Virology 258:118–127

    Article  CAS  Google Scholar 

  17. Polashock JJ, Hillman BI (1994) A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc Natl Acad Sci U S A 91:8680–8684

    Article  CAS  Google Scholar 

  18. Rogers HJ, Buck KW, Brasier CM (1987) A mitochondrial target for the double-stranded RNAs in diseased isolates of the fungus that causes dutch elm disease. Nature 329:558–560

    Article  CAS  Google Scholar 

  19. Zheng L, Zhao J, Liang X et al (2019) Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 164:897–901

    Article  CAS  Google Scholar 

  20. Ran H, Liu L, Li B et al (2016) Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol J 13:92

    Article  Google Scholar 

  21. Khalifa ME, Pearson MN (2013) Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus. Virology 441:22–30

    Article  CAS  Google Scholar 

  22. Stielow B, Klenk HP, Winter S et al (2011) A novel Tuber aestivum (Vittad.) mitovirus. Arch Virol 156:1107–1110

    Article  CAS  Google Scholar 

  23. Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    Article  CAS  Google Scholar 

  24. Polashock JJ, Bedker PJ, Hillman BI (1997) Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination. Mol Gen Genet 256:566–571

    Article  CAS  Google Scholar 

  25. Nerva L, Vigani G, Silvestre DD et al (2019) Biological and molecular characterization of Chenopodium quinoa mitovirus 1 reveals a distinct small RNA response compared to those of cytoplasmic RNA Viruses. J Virol 93:01998–02015

    Article  Google Scholar 

  26. Nibert ML, Vong M, Fugate KK et al (2018) Evidence for contemporary plant mitoviruses. Virology 518:14–24

    Article  CAS  Google Scholar 

  27. Bruenn JA (1991) Relationships among the positive-strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19:217–226

    Article  CAS  Google Scholar 

  28. Bruenn JA (1993) A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res 21:5667–5669

    Article  CAS  Google Scholar 

  29. Habili N, Symons RH (1989) Evolutionary relationships between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res 17:9543–9555

    Article  CAS  Google Scholar 

  30. Koonin EV (1991) The phylogeny of RNA-dependent RNA poly-merases of positive-strand RNA viruses. J Gen Virol 72:2197–2206

    Article  Google Scholar 

  31. Nibert ML (2017) Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology 507:96

    Article  CAS  Google Scholar 

  32. Jukes TH, Osawa S (1990) The genetic code in mitochondria and chloroplasts. Experientia 46:1117–1126

    Article  CAS  Google Scholar 

  33. Xu Z, Wu S, Liu L, Cheng J et al (2015) A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Res 197:127–136

    Article  CAS  Google Scholar 

  34. Doherty M, Coutts RHA, Brasier CM et al (2006) Sequence of RNA-dependent RNA Polymerase genes provides evidence for three more distinct mitoviruses in Ophiostoma Novo-ulmi Isolate Ld. Virus Genes 33:41–44

    Article  CAS  Google Scholar 

  35. Xie J, Wei D, Jiang D et al (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87:241–249

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (81860774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Stephen John Wylie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 KB)

Supplementary file2 (PDF 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, L., Anane, R.F. et al. Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis. Arch Virol 167, 645–650 (2022). https://doi.org/10.1007/s00705-021-05339-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05339-w

Navigation