Skip to main content
Log in

The titers of rice tungro bacilliform virus dictate the expression levels of genes related to cell wall dynamics in rice plants affected by tungro disease

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rice tungro disease (RTD) is a devastating disease of rice caused by combined infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV), with one of the main symptoms being stunting. To dissect the molecular events responsible for RTD-induced stunting, the expression patterns of 23 cell-wall-related genes were examined in different rice lines with the same titers of RTSV but different titers of RTBV and in lines where only RTBV was present. Genes encoding cellulose synthases, expansins, glycosyl hydrolases, exostosins, and xyloglucan galactosyl transferase showed downregulation, whereas those encoding defensin or defensin-like proteins showed upregulation with increasing titers of RTBV. RTSV titers did not affect the expression levels of these genes. A similar relationship was seen for the reduction in the cellulose and pectin content and the accumulation of lignin. In silico analysis of promoters of the genes indicated a possible link to transcription factors reported earlier to respond to viral titers in rice. These results suggest a common network in which the genes related to the cell wall components are affected during infection with diverse viruses in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagadhara D, Ramesh S, Pasalu IC et al (2003) Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol J 1:231–240. https://doi.org/10.1046/j.1467-7652.2003.00022.x

    Article  CAS  PubMed  Google Scholar 

  2. Hibino H, Roechan M, Sudarisman S (1978) Association of two types of virus particles with penyakit habang (tungro disease) of rice in Indonesia. Phytopathology 68:1412–1416. https://doi.org/10.1094/Phyto-68-1412

    Article  Google Scholar 

  3. Jones MC, Gough K, Dasgupta I et al (1991) Rice tungro disease is caused by an RNA and a DNA virus. J Gen Virol 72:757–761. https://doi.org/10.1099/0022-1317-72-4-757

    Article  CAS  PubMed  Google Scholar 

  4. Hay JM, Jones MC, Blakebrough ML et al (1991) An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res 19:2615–2621. https://doi.org/10.1093/nar/19.10.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen P, Kaniewska M, Smith C, Beachy RN (1993) Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193:621–630. https://doi.org/10.1006/viro.1993.1170

    Article  CAS  PubMed  Google Scholar 

  6. Rivera CT, Ou SH (1967) Transmission studies of the two strains of rice tungro virus. Plant Dis Rep 51:877–881

    Google Scholar 

  7. Cabauatan PQ, Hibino H (1985) Transmission of rice tungro bacilliform and spherical viruses by Nephotettix virescens Distant. Philippine Phytopathology (Philippines) v. 21

  8. Dasgupta I, Hull R, Eastop S et al (1991) Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J Gen Virol 72:1215–1221. https://doi.org/10.1099/0022-1317-72-6-1215

    Article  CAS  PubMed  Google Scholar 

  9. Azzam O, Chancellor TCB (2002) The biology, epidemiology, and management of rice tungro disease in Asia. Plant Dis 86:88–100. https://doi.org/10.1094/PDIS.2002.86.2.88

    Article  CAS  PubMed  Google Scholar 

  10. Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904. https://doi.org/10.1007/s11248-008-9174-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar G, Jyothsna M, Valarmathi P et al (2019) Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus. Arch Virol 164(4):1005–1003

    Article  CAS  Google Scholar 

  12. Valarmathi P, Kumar G, Robin S et al (2016) Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding. Virus Genes 52:521–529. https://doi.org/10.1007/s11262-016-1318-x

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu T, Satoh K, Kikuchi S, Omura T (2007) The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus. Mol Plant Microbe Interact 20:247–254. https://doi.org/10.1094/MPMI-20-3-0247

    Article  CAS  PubMed  Google Scholar 

  14. Satoh K, Kondoh H, Sasaya T et al (2010) Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol. https://doi.org/10.1099/vir.0.015990-0

    Article  PubMed  Google Scholar 

  15. Satoh K, Shimizu T, Kondoh H et al (2011) Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS ONE. https://doi.org/10.1371/journal,pone.0018094

    Article  PubMed  PubMed Central  Google Scholar 

  16. Satoh K, Kondoh H, De Leon TB et al (2013) Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res 171:111–120. https://doi.org/10.1016/j.virusres.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  17. Budot BO, Encabo JR, Ambita IDV et al (2014) Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with Rice tungro spherical virus. Front Microbiol 5:26

    Article  Google Scholar 

  18. Hibino H (1996) Biology and epidemiology of rice viruses. Annu Rev Phytopathol 32:249–274. https://doi.org/10.1146/annurev.phyto.34.1.249

    Article  Google Scholar 

  19. Falk BW, Tsai JH (1998) Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36:139–163

    Article  CAS  Google Scholar 

  20. Wang N, Xing Y, Lou Q et al (2017) Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. J Plant Physiol 209:84–94

    Article  CAS  Google Scholar 

  21. Encabo JR, Cabauatan PQ, Cabunagan RC et al (2009) Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah. Mol Plant-Microbe Interact 22:1268–1281. https://doi.org/10.1094/MPMI-22-10-1268

    Article  CAS  PubMed  Google Scholar 

  22. Cabauatan PQ, Kobayashi N, Ikeda R, Koganezawa H (1993) Oryza glaberrima: an indicator plant for rice tungro spherical virus. Int J Pest Manag 39:273–276. https://doi.org/10.1080/09670879309371804

    Article  Google Scholar 

  23. Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant cell walls. Science 80(306):2206–2211

    Article  Google Scholar 

  24. Hu H, Zhang R, Feng S et al (2018) AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol J 16(5):976–988

    Article  CAS  Google Scholar 

  25. Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  CAS  Google Scholar 

  26. Ding X, Cao Y, Huang L et al (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20(1):228–240

    Article  CAS  Google Scholar 

  27. Hara Y, Yokoyama R, Osakabe K et al (2014) Function of xyloglucan endotransglucosylase/hydrolases in rice. Ann Bot 114(6):1309–1318

    Article  CAS  Google Scholar 

  28. Yoshida S (1976) Routine procedure for growing rice plants in culture solution. Lab Man Physiol Stud Rice 1976:61–66

    Google Scholar 

  29. Sharma S, Kumar G, Dasgupta I (2018) Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 255:157–164. https://doi.org/10.1016/j.virusres.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  30. Purkayastha A, Mathur S, Verma V et al (2010) Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta 232:1531–1540. https://doi.org/10.1007/s00425-010-1273-z

    Article  CAS  PubMed  Google Scholar 

  31. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651. https://doi.org/10.1016/j.bbrc.2006.04.140

    Article  CAS  PubMed  Google Scholar 

  32. Bevitori R, Oliveira MB, Grossi-de-Sá MF et al (2014) Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genet Mol Res 13:9795–9805. https://doi.org/10.4238/2014.November.27.7

    Article  CAS  PubMed  Google Scholar 

  33. Peng L, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211:406–414

    Article  CAS  Google Scholar 

  34. Li F, Zhang M, Guo K et al (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525

    Article  CAS  Google Scholar 

  35. Sluiter A, Hames B, Ruiz R et al (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16

    Google Scholar 

  36. Wu Z, Zhang M, Wang L et al (2013) Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol Biofuels 6:183

    Article  Google Scholar 

  37. Huang J, Takano T, Akita S (2000) Expression of α-expansin genes in young seedlings of rice (Oryza sativa L.). Planta 211:467–473. https://doi.org/10.1007/s004250000311

    Article  CAS  PubMed  Google Scholar 

  38. Uozu S, Tanaka-Ueguchi M, Kitano H et al (2000) Characterization of XET-related genes of rice. Plant Physiol 122:853–860

    Article  CAS  Google Scholar 

  39. Shin J-H, Jeong D-H, Park MC, An G (2005) Characterization and transcriptional expression of the α-expansin gene family in rice. Mol Cells 20(2):210–218

    CAS  PubMed  Google Scholar 

  40. Burton RA, Gibeaut DM, Bacic A et al (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12:691–705

    Article  CAS  Google Scholar 

  41. Tanaka K, Murata K, Yamazaki M et al (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83

    Article  CAS  Google Scholar 

  42. Kende H, Bradford K, Brummell D et al (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  Google Scholar 

  43. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  Google Scholar 

  44. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321

    Article  CAS  Google Scholar 

  45. Dal Santo S, Vannozzi A, Tornielli GB, Fasoli M, Venturini L et al (2013) Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS ONE 8(4):e62206. https://doi.org/10.1371/journal.pone.0062206

    Article  CAS  Google Scholar 

  46. Goh H-H, Sloan J, Dorca-Fornell C, Fleming A (2012) Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol 159:1759–1770

    Article  CAS  Google Scholar 

  47. Choi D, Lee Y, Cho H-T, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    Article  CAS  Google Scholar 

  48. Nishitani K, Tominaga R (1991) In vitro molecular weight increase in xyloglucans by an apoplastic enzyme preparation from epicotyls of Vigna angularis. Physiol Plant 82:490–497

    Article  CAS  Google Scholar 

  49. Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    Article  CAS  Google Scholar 

  50. Smith RC, Fry SC (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J 279:529–535

    Article  CAS  Google Scholar 

  51. Schoelz JE, Harries PA, Nelson RS (2011) Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4:813–831. https://doi.org/10.1093/mp/ssr070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otulak-Kozieł K, Kozieł E, Lockhart BEL (2018) Plant cell wall dynamics in compatible and incompatible potato response to infection caused by potato virus Y (PVY(NTN)). Int J Mol Sci 19:862. https://doi.org/10.3390/ijms19030862

    Article  CAS  PubMed Central  Google Scholar 

  53. Wu J, Jin X, Zhao Y et al (2016) Evolution of the defensin-like gene family in grass genomes. J Genet 95:53–62

    Article  CAS  Google Scholar 

  54. Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  55. Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288. https://doi.org/10.1146/annurev.py.18.090180.001355

    Article  CAS  Google Scholar 

  56. Yin Y, Chen L, Beachy R (1997) Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J 12:1179–1188

    Article  CAS  Google Scholar 

  57. Dai S, Zhang Z, Chen S, Beachy RN (2004) RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease. Proc Natl Acad Sci USA 101:687–692

    Article  CAS  Google Scholar 

  58. Dai S, Wei X, Alfonso AA et al (2008) Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease. Proc Natl Acad Sci 105:21012–21016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GK acknowledges a research associate fellowship funded by the Council of Scientific and Industrial Research, New Delhi. Funds for this work were made available as the J. C. Bose Fellowship by the Science and Engineering Research Board, Department of Science and Technology, Government of India, to ID. The authors acknowledge a DU-DST FIST infrastructural grant of the Department of Plant Molecular Biology, University of Delhi South Campus

Author information

Authors and Affiliations

Authors

Contributions

The work was conceived by GK and ID, GK performed the experiments and analyses, and GK and ID wrote and approved the manuscript.

Corresponding author

Correspondence to Indranil Dasgupta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest pertaining to this work.

Ethical approval

This work was performed in accordance with all applicable ethical standards.

Additional information

Handling Editor: Ralf Georg Dietzgen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Dasgupta, I. The titers of rice tungro bacilliform virus dictate the expression levels of genes related to cell wall dynamics in rice plants affected by tungro disease. Arch Virol 166, 1325–1336 (2021). https://doi.org/10.1007/s00705-021-05006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05006-0

Navigation