Skip to main content

Advertisement

Log in

Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study presents an efficient approach to predict the Rabi and Kharif crop yield using a relatively new and robust machine learning (ML) model named random forest (RF). The standard precipitation evaporation index (SPEI) with different time lags (e.g., 1 to 12 months) are utilized as predictive variables. The SPEI was estimated using the climate prediction center (CPC) precipitation, and temperature dataset for the period 1981–2015 are employed. The feasibility of the RF model is validated against some other well-known ML models such as support vector regression (SVR), k-nearest neighbors (K-NN), and bagged CART models. The results showed a significant relationship between crop yields and the SPEI. The RF model showed the highest performance with the minimum values of absolute error measures (e.g., root mean square error (RMSE) and mean absolute error (MAE)) in the testing phase (0.1826–0.1383) and (0.1234–0.1092) for cotton and wheat production, respectively. Cotton yield prediction accuracy using the RF model improved compared to the SVR, K-NN, bagged CART, and ANN in terms of RMSE, and MAE indices are 12–10.79%, 12.33–10.79%, and 5.7–0.17%, respectively. Overall, the RF model provided a reliable alternative ML-based strategy for the cotton and wheat yield prediction over the Pakistan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6:

Similar content being viewed by others

References

  • Aghighi H, Azadbakht M, Ashourloo D, et al (2018) Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.

  • Ahmed K, Shahid S, Bin HS, Jun WX (2016) Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch Env Res Risk A 30:747–762. https://doi.org/10.1007/s00477-015-1117-2

    Article  Google Scholar 

  • Ahmed K, Shahid S, Ismail T et al (2018a) Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera 31:301–316

    Article  Google Scholar 

  • Ahmed K, Shahid S, Nawaz N (2018b) Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos Res 214:364–374

    Article  Google Scholar 

  • Amin A, Nasim W, Fahad S, Ali S, Ahmad S, Rasool A, Saleem N, Hammad HM, Sultana SR, Mubeen M, Bakhat HF, Ahmad N, Shah GM, Adnan M, Noor M, Basir A, Saud S, Habib ur Rahman M, Paz JO (2018) Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate model: ensemble application. Atmos Res 213:422–436

    Article  Google Scholar 

  • Arroyo J, Maté C (2009) Forecasting histogram time series with k-nearest neighbours methods. Int J Forecast 25:192–207. https://doi.org/10.1016/j.ijforecast.2008.07.003

    Article  Google Scholar 

  • Ashraf M, Routray JK (2015)Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Nat Hazards 77:229–254. https://doi.org/10.1007/s11069-015-1593-1

    Article  Google Scholar 

  • Bannayan M, Sanjani S, Alizadeh A, Lotfabadi SS, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. F Crop Res 118:105–114. https://doi.org/10.1016/j.fcr.2010.04.011

    Article  Google Scholar 

  • Basso B, Cammarano D, Carfagna E (2013) Review of crop yield forecasting methods and early warning systems. In: Report Presented to First Meeting of the Scientific Advisory Committee of the Gloal Strategy to Improve Agricultural and Rural Statistics

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023. https://doi.org/10.1002/joc.3887

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. F. Crop. Res.

  • Chauhan S, Srivastava HS, Patel P (2018) Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data. Remote Sens Environ 216:28–43. https://doi.org/10.1016/j.rse.2018.06.014

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. In: Journal of Experimental Botany

  • Chipanshi A, Zhang Y, Kouadio L, Newlands N, Davidson A, Hill H, Warren R, Qian B, Daneshfar B, Bedard F, Reichert G (2015) Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric For Meteorol 206:137–150. https://doi.org/10.1016/j.agrformet.2015.03.007

    Article  Google Scholar 

  • Chlingaryan A, Sukkarieh S, Whelan B (2018) Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric 151:61–69

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. Ecology. 88:2783–2792. https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  • Diop L, Bodian A, Djaman K, Yaseen ZM, Deo RC, el-shafie A, Brown LC (2018) The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River. Environ Earth Sci 77:182. https://doi.org/10.1007/s12665-018-7376-8

    Article  Google Scholar 

  • dos Santos Luciano AC, Picoli MCA, Duft DG, Rocha JV, Leal MRLV, Le Maire G (2021) Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Comput Electron Agric 184:106063

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, et al (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable Agriculture

  • Folberth C, Baklanov A, Balkovič J, Skalský R, Khabarov N, Obersteiner M (2019)Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric For Meteorol 264:1–15

    Article  Google Scholar 

  • Ghozat A, Sharafati A, Hosseini SA (2021)Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theor Appl Climatol 143:211–225. https://doi.org/10.1007/s00704-020-03428-5

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. In: Pattern Recognition Letters

  • Govindaraju RS et al (2000) Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J Hydrol Eng 5:124–137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media

  • Helama S, Meriläinen J, Tuomenvirta H (2009) Multicentennial megadrought in northern Europe coincided with a global El Niño–Southern Oscillation drought pattern during the Medieval Climate Anomaly. Geology 37:175–178

    Article  Google Scholar 

  • Heremans S, Dong Q, Zhang B, Bydekerke L, van Orshoven J (2015) Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data. J Appl Remote Sens 9:097095. https://doi.org/10.1117/1.JRS.9.097095

    Article  Google Scholar 

  • Hosseini TSM, Hosseini SA, Ghermezcheshmeh B, Sharafati A (2020) Drought hazard depending on elevation and precipitation in Lorestan, Iran. Theor Appl Climatol 142:1369–1377

    Article  Google Scholar 

  • Kapelner A, Bleich J (2013) bartMachine : machine learning with Bayesian Additive Regression Trees. arXiv Prepr

  • Kendall MG (1955) Rank correlation methods.(1955). London Charles Griffin Co Ltd

  • Khaki S, Wang L (2019) Crop yield prediction using deep neural networks. Front Plant Sci 10:621

    Article  Google Scholar 

  • Khaki S, Pham H, & Wang L (2020a). YieldNet: a convolutional neural network for simultaneous corn and soybean yield prediction based on remote sensing data. arXiv preprint arXiv:2012.03129.

  • Khaki S, Khalilzadeh Z, Wang L (2020b) Predicting yield performance of parents in plant breeding: a neural collaborative filtering approach. PLoS One 15(5):e0233382

    Article  Google Scholar 

  • Khan N, Shahid S, Ahmed K, Ismail T, Nawaz N, Son M (2018) Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets. Water 10:1793

    Article  Google Scholar 

  • Khan N, Shahid S, Bin Ismail T, Wang X-J(2019a) Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor Appl Climatol 136:899–913

    Article  Google Scholar 

  • Khan N, Shahid S, Juneng L, Ahmed K, Ismail T, Nawaz N (2019b) Prediction of heat waves in Pakistan using quantile regression forests. Atmos Res 221:1–11

    Article  Google Scholar 

  • Khan N, Sachindra DA, Shahid S, Ahmed K, Shiru MS, Nawaz N (2020a) Prediction of droughts over Pakistan using machine learning algorithms. Adv Water Resour 139:103562

    Article  Google Scholar 

  • Khan N, Shahid S, Chung ES, Behlil F, Darwish MS (2020b) Spatiotemporal changes in precipitation extremes in the arid province of Pakistan with removal of the influence of natural climate variability. Theor Appl Climatol 142(3):1447–1462

    Article  Google Scholar 

  • Khanal S, Fulton J, Klopfenstein A, Douridas N, Shearer S (2018) Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput Electron Agric 153:213–225. https://doi.org/10.1016/j.compag.2018.07.016

    Article  Google Scholar 

  • Kim N, Lee Y-W(2016) Machine learning approaches to corn yield estimation using satellite images and climate data: a case of Iowa State. J Korean Soc Surv Geod Photogramm Cartogr 34:383–390. https://doi.org/10.7848/ksgpc.2016.34.4.383

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer, New York, p 13

  • Li Z, Zhang Z, Zhang L (2021) Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data. Agric Syst 191:103141

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150:1443–1452. https://doi.org/10.1016/j.agrformet.2010.07.008

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econ J Econ Soc 13:245–259

    Google Scholar 

  • Mathieu JA, Aires F (2018) Assessment of the agro-climatic indices to improve crop yield forecasting. Agric For Meteorol 253-254:15–30. https://doi.org/10.1016/j.agrformet.2018.01.031

    Article  Google Scholar 

  • Mckee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. AMS 8th Conf Appl Climatol 179–184. citeulike-article-id:10490403

  • Midega CAO, Bruce TJA, Pickett JA, Pittchar JO, Murage A, Khan ZR (2015)Climate-adapted companion cropping increases agricultural productivity in East Africa. F Crop Res 180:118–125. https://doi.org/10.1016/j.fcr.2015.05.022

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nevavuori P, Narra N, Lipping T (2019) Crop yield prediction with deep convolutional neural networks. Comput Electron Agric 163:104859

    Article  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. In: Journal of Experimental Botany

  • Prasad NR, Patel NR, Danodia A (2021) Crop yield prediction in cotton for regional level using random forest approach. Spat Inf Res 29(2):195–206

    Article  Google Scholar 

  • Rezaali M, Quilty J, Karimi A (2021) Probabilistic urban water demand forecasting using wavelet-based machine learning models. J Hydrol 600:126358

    Article  Google Scholar 

  • Sanikhani H, Deo RC, Samui P, Kisi O, Mert C, Mirabbasi R, Gavili S, Yaseen ZM (2018) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput Electron Agric 152:242–260

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sharafati A, Pezeshki E, Shahid S, Motta D (2020) Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. J Soils Sediments 20(7):2977–2996

    Article  Google Scholar 

  • Sikorska-Senoner AE, Quilty JM (2021) A novel ensemble-basedconceptual-data-driven approach for improved streamflow simulations. Environ Model Softw 143:105094

    Article  Google Scholar 

  • Tiwari P, Shukla P (2020) Artificial neural network-based crop yield prediction using NDVI, SPI, VCI feature vectors. In: In Information and Communication Technology for Sustainable Development. Springer, Singapore, pp 585–594

    Chapter  Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G et al (2014) Global warming and changes in drought. Nat. Clim, Chang

    Book  Google Scholar 

  • Ullah A, Khan D, Zheng S (2018) Testing long-run relationship between agricultural gross domestic product and fruits production: evidence from Pakistan. Ciência Rural 48

  • van Duinen R, Filatova T, Geurts P, van der Veen A (2015) Empirical Analysis of Farmers' Drought Risk Perception: Objective Factors, Personal Circumstances, and Social Influence. Risk Anal 35:741–755. https://doi.org/10.1111/risa.12299

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, el Kenawy A (2010b) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11:1033–1043

    Article  Google Scholar 

  • Wright MN, Ziegler A (2015) ranger: a fast implementation of random forests for high dimensional data in C++ and R. arXiv Prepr arXiv150804409

  • Xie P, Chen M, Shi W (2010) CPC unified gauge-based analysis of global daily precipitation. In: In: Preprints, 24th Conf. on Hydrology. Amer. Meteor. Soc, Atlanta

    Google Scholar 

  • Yaseen Z, Kisi O, Demir V (2016a) Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resour Manag 30:4125–4151. https://doi.org/10.1007/s11269-016-1408-5

    Article  Google Scholar 

  • Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, el-Shafie A (2016b)Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J Hydrol 542:603–614. https://doi.org/10.1016/j.jhydrol.2016.09.035

    Article  Google Scholar 

  • Yaseen ZM, Allawi MF, Yousif AA, Jaafar O, Hamzah FM, el-Shafie A (2018)Non-tuned machine learning approach for hydrological time series forecasting. Neural Comput Appl 30:1479–1491

    Article  Google Scholar 

  • Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S (2021) Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh. Sci Rep 11(1):1–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Sharafati.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Shahid, S., Sharafati, A. et al. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab J Geosci 14, 2035 (2021). https://doi.org/10.1007/s12517-021-08432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08432-1

Keywords

Navigation