Skip to main content

Advertisement

Log in

Effect of autocorrelation on temporal trends in air-temperature in Northern Algeria and links with teleconnections patterns

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study investigates the effect of autocorrelation on temporal trends and step change on a monthly, seasonal and annual temperatures of six meteorological stations over the North of Algeria. Afterwards, links between the general atmospheric circulation, via six climate indices, and temperature data are examined. The trends in temperatures are analysed using six different versions of the Mann-Kendall approach while, the step changes of the time series are defined using the original Pettitt test and the modified-Pettitt. The Statistical tests have shown an increase in annual temperatures from 0.8 to 0.9°C since the 1980s in the coastal regions and the 1990s on the highlands. This warming most often exceeds 1°C on a seasonal scale, particularly in summer; however, no significant trend is observed in the winter. On a monthly scale, the increase in temperatures is marked between April and October. The analysis of the relationships between six climate indices and average temperatures has shown that the inter-annual temperature variability is most often associated with the East Atlantic oscillation for the entire study area. The winter temperatures are influenced by the Mediterranean oscillation as well as the North Atlantic oscillation. The East Atlantic oscillation is the dominant mode of circulation in spring and summer, whereas in autumn, the temperatures are strongly linked to the West Mediterranean oscillation. However, no significant correlations have been observed between temperatures and the Arctic oscillation and El Nino southern oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable

Code availability

Not applicable

References

  • Achour K, Meddi M, Zeroual A, Bouabdelli S, Maccioni P, Moramarco T (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci. https://doi.org/10.1007/s12040-019-1306-3

  • Barnston A, Livezey RE (1987) Classification, seasonality and persistence of low-frequency circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bartolini G, di Stefano V, Maracchi G, Orlandini S (2012) Mediterranean warming is especially due to summer season. Evidences from Tuscany (central Italy). Theor Appl Climatol 107:279–295. https://doi.org/10.1007/s00704-011-0481-1

    Article  Google Scholar 

  • Bekkoussa B, Meddi M, Jourde H (2008) Forçage climatique et anthropique sur la ressource en eau souterraine d’une région semi-aride: Cas de la plaine de Ghriss (Nord-Ouest algérien). Sécheresse 18:173–184

    Google Scholar 

  • Bensaoula F, Collignon B, Adjim M (2019) Assessment of Groundwater Resources in the Jurassic Horst (Western Algeria). In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg,pp 1-42. https://doi.org/10.1007/698_2019_406

  • Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability. In: Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK, pp 433–467

    Google Scholar 

  • Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change. https://doi.org/10.2166/wcc.2020.207

  • Caloiero T, Coscarelli R, Ferrari E, Sirangelo B (2017) Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int J Climatol 37:284–297. https://doi.org/10.1002/joc.5003

    Article  Google Scholar 

  • Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geoscience 342:234–243. https://doi.org/10.1016/j.crte.2010.02.001

    Article  Google Scholar 

  • Chebil A, Mtimet N, Tizaoui H (2011) Impact du changement climatique sur la productivité des cultures céréalières dans la région de Béja (Tunisie). AfJARE 6:144–154

    Google Scholar 

  • Conte M, Giuffrida A, Tedesco S (1989) The Mediterranean Oscillation. Impact on precipitation and hydrology. in Conference on Climate Water, Publications of the Academy of Finland, Helsinki, pp121–137

  • Coscarelli R, Caloiero T, Lo Feudo T (2013) Relationship between winter rainfall amount and teleconnection patterns in Southern Italy. Eur Water 43:13–21

    Google Scholar 

  • Cunderlik JM, Burn DH (2004) Linkages between regional trends in monthly maximum flows and selected climatic variables. ASCE J Hydrol Eng 9:246–256

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Data P, Das S (2019) Analysis of long-term precipitation changes in West Bengal, India: an approach to detect monotonic trends influenced by autocorrelations. Dyn Atmospheres Oceans 88:101–118. https://doi.org/10.1016/j.dynatmoce.2019.101118

    Article  Google Scholar 

  • Del Río S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planetary Change 78:65–75. https://doi.org/10.1016/j.gloplacha.2011.05.012

    Article  Google Scholar 

  • Dogan M, Ulke A, Cigizoglu HK (2015) Trend direction changes of Turkish temperature series in the first half of 1990s. Theor Appl Climatol 121:23–39. https://doi.org/10.1007/s00704-014-1209-9

    Article  Google Scholar 

  • Dorte V (2013) Tunisia in a changing climate: assessement and actions for increased resilience and development. Washington, DC: World Bank.

  • Driouech F, Rached SB, Hairech TE (2013) Climate Variability and Change in North African Countries. In: Sivakumar M, Lal R, Selvaraju R, Hamdan I (eds) Climate Change and Food Security in West Asia and North Africa. Springer, Dordrech, pp 161–172

    Chapter  Google Scholar 

  • Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–98. Int J Climatol 23:1843–1866. https://doi.org/10.1002/joc.973

    Article  Google Scholar 

  • Durand F (2007). Le réchauffement climatique en débats : incertitudes, acquis et enjeux. Ellipses

  • Eichner JF, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber H J (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Physical Review E. https://doi.org/10.1103/PhysRevE.68.046133

  • Fathian F, Dehghan Z, Bazrkar MH, Eslamian S (2016) Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol Sci J 61:892–904. https://doi.org/10.1080/02626667.2014.932911

    Article  Google Scholar 

  • Feidas H (2016) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theor Appl Climatol 129:1383–1406. https://doi.org/10.1007/s00704-016-1854-2

    Article  Google Scholar 

  • Filahi S, Tanarhte M, Mouhir L et al (2016) Trends in indices of daily temperature and precipitations extremes in Morocco. Theor Appl Climatol 124:959–972. https://doi.org/10.1007/s00704-015-1472-4

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett. https://doi.org/10.1029/2006GL025734

  • Hafez YY, Robaa SM (2008) The relationship between the mean surface air temperature in Egypt and NAO Index and ENSO. The Open Atmospheric Science Journal 2:8–17

    Article  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hyndman RJ (2021) CRAN task view: time series analysis. https://cloud.r-project.org/web/views/TimeSeries.html. Accessed 25 March 2021

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.

  • Kendall MG (1975) Rank Correlation Measures. Charles Griffin, London.

  • Kim S (2015) ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22(6):665

    Google Scholar 

  • Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24. https://doi.org/10.1623/hysj.48.1.3.43481

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Res Res 43:W05-429. https://doi.org/10.1029/2006WR005592

    Article  Google Scholar 

  • Kulkarni A, von Storch H (1995) Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol Z 4:82–85

    Article  Google Scholar 

  • Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long-term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. https://doi.org/10.1016/j.jhydrol.2009.06.012

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Nino/Southern Oscillation response to global warming. PNAS 106: 20578 –20583. www.pnas.org/cgi/https://doi/https://doi.org/10.1073/pnas.0710860105

  • Lee JH, Julien PY, Maloney ED (2019) The variability of South Korean temperature associated with climate indicators. Theor Appl Climatol 138:469–489. https://doi.org/10.1007/s00704-019-02842-8

    Article  Google Scholar 

  • Mamara A, Argiriou AΑ, Anadranistakis M (2016) Recent trend analysis of mean air temperature in Greece based on homogenized data. Theor Appl Climatol 126:543–573. https://doi.org/10.1007/s00704-015-1592-x

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Dickson R, Hurrell J, Cartney M, Saravanan R, Czaja A, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. https://doi.org/10.1002/joc.693

    Article  Google Scholar 

  • Martín P, Sabatés A, Lloret J, Martín-Vide J (2012) Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Climatic Change 110:925–939. https://doi.org/10.1007/s10584-011-0091-z

    Article  Google Scholar 

  • Martín-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475

    Article  Google Scholar 

  • Meddi H, Meddi M (2009) Variabilité des précipitations annuelles du Nord-Ouest de l’Algérie. Sécheresse 20:173–184

    Google Scholar 

  • Medjerab A, Henia L (2005) Régionalisation des pluies annuelles dans l’Algérie Nord-Occidentale. Revue géographique de l’Est, Climat, sécheresse et canicule 45:1–15

    Google Scholar 

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysisby Mann–Kendall test: a case study of North-Eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  • Nastos PT, Philandras CM, Founda D, Zerefos CS (2011) Air temperature trends related to changes in atmospheric circulation in the wider area of Greece. Int J Remote Sens 32:737–750. https://doi.org/10.1080/01431161.2010.517796

    Article  Google Scholar 

  • NOAA (2018). https://www.ncdc.noaa.gov/cdo-web/. Accessed 12 Jan 2020

  • Nojarov P (2019) Factors affecting air temperature in Bulgaria. Theor Appl Climatol 137:571–586. https://doi.org/10.1007/s00704-018-2622-2

    Article  Google Scholar 

  • Patakamuri SK. and O’Brien N (2019) Modified versions of Mann Kendall and Spearman’s Rho trend tests. Accessed July 05, 2021. https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf.

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135. https://doi.org/10.2307/2346729

    Article  Google Scholar 

  • Piyoosh AK, Ghosh SK (2017) Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stoch Environ Res Risk Assess 31:2075–2096. https://doi.org/10.1007/s00477-016-1347-y

    Article  Google Scholar 

  • Plewa K, Perz A, Wrzesiński D (2019) Links between teleconnection patterns and water level regime of selected Polish lakes. Water. https://doi.org/10.3390/w11071330

  • Pohlert T, Pohlert MT, Kendall S (2016) Package ‘trend’: non-parametric trend tests and change-point detection. Accessed July 05, 2021. http://brieger.esalq.usp.br/CRAN/web/packages/ trend/trend.pdf

  • Price R.A (2017) Climate change and stability in North Africa. K4D Helpdesk Report 242. Brighton, UK: Institute of Development Studies.

  • Radhouane L (2013) Climate change impacts on North African countries and on some Tunisian economic sectors. JAEID 107:101–113

    Google Scholar 

  • Ramadan HH, Ramamurthy AS, Beighley RE (2012) Inter-annual temperature and precipitation variations over the Litani Basin in response to atmospheric circulation patterns. Theor Appl Climatol 108:563–577. https://doi.org/10.1007/s00704-011-0554-1

    Article  Google Scholar 

  • Ramadan HH, Beighley R.E, Ramamurthy AS (2013) Temperature and precipitation trends in Lebanon’s largest river: the Litani Basin. J Water Resour Plan Manag https://doi.org/10.1061/(ASCE)WR.1943-5452.0000238

  • Ramos MC, Balasch JC, Martínez-Casasnovas JA (2012) Seasonal temperature and precipitation variability during the last 60 years in a Mediterranean climate area of Northeastern Spain: a multivariate analysis. Theor Appl Climatol 110:35–53. https://doi.org/10.1007/s00704-012-0608-z

    Article  Google Scholar 

  • Ríos-Cornejo D, Penas Á, Álvarez-Esteban R, Del Río S (2015) Links between teleconnection patterns and mean temperature in Spain. Theor Appl Climatol 122:1–18. https://doi.org/10.1007/s00704-014-1256-2

    Article  Google Scholar 

  • Rust HW, Richling A, Bissolli P, Ulbrich U (2015) Linking teleconnection patterns to European temperature: a multiple linear regression model. Meteorologische Zeitschrift 24:411–423

    Article  Google Scholar 

  • Sabziparvar AA, Jahromi FK (2018) Analysis of changes in thermal growing season indices (tGSI) and their relations with some selected atmospheric teleconnection patterns (ATPs) over the northwest of Iran. Environ Monit Assess 190:1–17. https://doi.org/10.1007/s10661-018-6519-4

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2016) The importance of prewhitening in change point analysis under persistence. Stoch Env Res Risk Assess 30:763–777

    Article  Google Scholar 

  • Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Change 104:599–627. https://doi.org/10.1007/s10584-010-9835-4

    Article  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Amer J Psychol 15:72–101

    Article  Google Scholar 

  • Sušelj K, Bergant K (2006) Mediterranean Oscillation Index. Geophysical Research Abstracts 8:1–2

    Google Scholar 

  • Taibi S, Meddi M, Souag D, Mahe G (2013) Évolution et régionalisation des précipitations au nord de l’Algérie (1936–2009). In: Climate and land surface changes in hydrology. IAHS Publ 359:191–197

    Google Scholar 

  • Taibi S, Meddi M, Mahé G, Assani A (2017) Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor Appl Climatol 127:241–257. https://doi.org/10.1007/s00704-015-1626-4

    Article  Google Scholar 

  • Tanaka HL, Tamura M (2016) Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale. Polar Sci 10:199–209. https://doi.org/10.1016/j.polar.2016.03.002

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DW, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation Part II: Trends. J Clim 13:1018–1036

    Article  Google Scholar 

  • Toreti A, Desiato F, Fioravanti G, Perconti W (2010) Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim Change 99:211–227. https://doi.org/10.1007/s10584-009-9640-0

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Amer Meteor 78:2771–7

    Article  Google Scholar 

  • Trigo RM, Pozo-Vazquez D, Osborn TJ, Castro-Diez Y, Gamiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian peninsula. Int J Climatol 24:925–944

    Article  Google Scholar 

  • Türkeş M, Erlat E (2009) Winter mean temperature variability in Turkey associated with the North Atlantic Oscillation. Meteorol Atmos Phys 105:211–225. https://doi.org/10.1007/s00703-009-0046-3

    Article  Google Scholar 

  • Vancutsem C, Ceccato P, Dink T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ 114:449–465

    Article  Google Scholar 

  • von Storch VH (1995) Misuses of statistical analysis in climate research, In: Analysis of Climate Variability: Applications of Statistical Techniques. In: Navarra A (ed) von Storch V. Springer- Verlag, Berlin, pp 11–26

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang D, Wang C, Yang X, Lu J (2005) Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys Res Lett. https://doi.org/10.1029/2005GL022952

  • Yu B, Lin H, Soulard N (2019) A comparison of north American surface temperature and temperature extreme anomalies in association with various atmospheric teleconnection patterns. Atmosphere. https://doi.org/10.3390/atmos10040172

  • Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Zamani R, Mirabbasi R, Abdollahi S, Jhajharia D (2017) Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and Hurst coefficient in a semi-arid region of Iran. Theor Appl Climatol 129:33–45. https://doi.org/10.1007/s00704-016-1747-4

    Article  Google Scholar 

  • Zeroual A, Assani AA, Medd M, Alkama R (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen-Geiger climate classification scheme. Clim Dyn 52:227–243. https://doi.org/10.1007/s00382-018-4128-0

    Article  Google Scholar 

  • Zeroual A, Assani AA, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 period. Hydrol Res. https://doi.org/10.2166/nh.2016.244

  • Zhang R (2017) Atmospheric science: warming boosts air pollution. Nat Clim Chang 7:238–239. https://doi.org/10.1038/nclimate3257

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The National Office of meteorology (office National de Météorologie) for providing data series.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by [Taïbi S.] and [Zeroual A.]. The first draft of the manuscript was written by Taïbi S. and all authors discussed the results and contributed to the final manuscript [Taïbi S.] and [Zeroual A.] revised the manuscript.

Corresponding author

Correspondence to Sabrina Taïbi.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taïbi, S., Zeroual, A. & Meddi, M. Effect of autocorrelation on temporal trends in air-temperature in Northern Algeria and links with teleconnections patterns. Theor Appl Climatol 147, 959–984 (2022). https://doi.org/10.1007/s00704-021-03862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03862-z

Navigation