Skip to main content
Log in

Links between teleconnection patterns and mean temperature in Spain

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This work describes the relationships between Spanish temperature and four teleconnection patterns with influence on the Iberian Peninsula on monthly, seasonal and annual time scales, using data from 144 meteorological stations. Partial correlation analyses were carried out using Spearman test, and spatial distribution maps of the correlation coefficients were produced with geostatistical interpolation techniques. We regionalize the study area based on homogeneous areas containing weather stations with a similar response of temperatures to the same patterns. The links between the temperature and the patterns are mainly positive; only the correlations with Western Mediterranean Oscillation (WeMO) in the north and west are negative, indicating that WeMO plays an opposed role in temperature behaviour in Spain. In general terms, the four modes exert considerable influence on temperature in February, May and September. The East Atlantic (EA) is the pattern with the strongest influence on temperature in Spain—mainly in the north—except in June. Generally, on the seasonal and annual scales, large significant areas were only observed for the EA. EA and WeMO best account for the mean temperature on the Mediterranean fringe and in northern Spain, while EA and North Atlantic Oscillation largely explain the temperature in the rest of Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beranová R, Huth R (2007) Time variations of the relationships between the North Atlantic Oscillation and European Winter temperature and precipitation. Stud Geophys Geod 51(4):575–590. doi:10.1007/s11200-007-0034-3

    Article  Google Scholar 

  • Bochníček J, Hejda P (2005) The winter NAO pattern changes in association with solar and geomagnetic activity. J Atmos Sol-Terr Phys 67:17–32. doi:10.1016/j.jastp.2004.07.014

    Article  Google Scholar 

  • Bojariu R, Gimeno L (2003) Predictability and numerical modelling of the North Atlantic Oscillation. Earth Sci Rev 63:145–168. doi:10.1016/S0012-8252(03)00036-9

    Article  Google Scholar 

  • Capel JJ (2000) El clima de la península Ibérica (2ª ed.). Ariel Geografía, Barcelona, Spain

  • Castro-Díez Y, Pozo-Vázquez D, Rodrigo FS, Esteban-Parra MJ (2002) NAO and winter temperature variability in southern Europe. Geophys Res Lett 29(8):1–4. doi:10.1029/2001GL014042

    Article  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276. doi:10.1207/s15327906mbr0102_10

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108(2):101–112. doi:10.1016/S0168-1923(01)00233-7

    Article  Google Scholar 

  • Coppola E, Kucharski F, Giorgi F, Molteni F (2005) Bimodality of the North Atlantic Oscillation in simulations with greenhouse gas forcing. Geophys Res Lett 32(23), L23709. doi:10.1029/2005GL024080

    Article  Google Scholar 

  • Costa AC, Soares A (2009) Homogenization of climate data: review and new perspectives using geostatistics. Math Geosci 41:291–305. doi:10.1007/s11004-008-9203-3

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277. doi:10.1126/science.289.5477.270

    Article  Google Scholar 

  • DeGaetano AT (2001) Spatial grouping of United States climates stations using a hybrid clustering approach. Int J Climatol 21:791–807. doi:10.1002/joc.645

    Article  Google Scholar 

  • del Río S, Fraile R, Herrero L, Penas Á (2007) Analysis of recent trends in mean maximum and minimum temperatures in a region of the NW of Spain (Castilla y León). Theor Appl Climatol 90:1–12. doi:10.1007/s00704-006-0278-9

    Article  Google Scholar 

  • del Río S, Anjum Iqbal M, Cano-Ortiz A, Herrero L, Hassan A, Penas Á (2013) Recent mean temperature trends in Pakistan and links with teleconnection patterns. Int J Climatol 33:277–290. doi:10.1002/joc.3423

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD, Almazroui M, Kolli RK, Boucherf D, Al-Mulla AY, Nour AY, Aly AA, Nada TAA, Semawi MM, Dashti HAA, Salhab TG, El Fadli KI, Muftah MK, Eida SD, Badi W, Driouech F, Rhaz KE, Abubaker MJY, Ghulam AS, Erayah AS, Mansour MB, Alabdouli WO, Dhanhani JSA, Al Shekaili MN (2013) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol. doi:10.1002/joc.3707

    Google Scholar 

  • El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2012) Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmos Res 106:159–180. doi:10.1016/j.atmosres.2011.12.006

    Article  Google Scholar 

  • Espírito Santo F, de Lima MIP, Ramos AM, Trigo RM (2014) Trends in seasonal surface air temperature in mainland Portugal, since 1941. Int J Climatol 34:1814–1837. doi:10.1002/joc.3803

    Article  Google Scholar 

  • Essenwanger OM (1986) Elements of statistical analysis. World survey of climatology vol.1B. Elsevier, Amsterdam

    Google Scholar 

  • Fernández-Montes S, Rodrigo FS (2012) Trends in seasonal indices of daily temperature extremes in the Iberian Peninsula, 1929–2005. Int J Climatol 32:2320–2332. doi:10.1002/joc.3399

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Inison S, Hurrell JW (2009) The Summer North Atlantic Oscillation: past, present, and future. J Clim 22(5):1082–1103. doi:10.1175/2008JCLI2459.1

    Article  Google Scholar 

  • Font Tullot I (2000) Climatología de España y Portugal (2ª ed.). Universidad de Salamanca, Salamanca, Spain

  • Frías MD, Fernández J, Sáenz J, Rodríguez-Puebla C (2005) Operational predictability of monthly average maximum temperature over the Iberian Peninsula using DEMETER simulations and downscaling. Tellus Ser A Dyn Meteorol Oceanogr 57:448–463. doi:10.1111/j.1600-0870.2005.00105.x

    Article  Google Scholar 

  • Gauthier TD (2001) Detecting trends using Spearman's rank correlation coefficient. Environ Forensics 2:359–362. doi:10.1006/enfo.2001.0061

    Article  Google Scholar 

  • Georgieva K, Kirov B, Tonev P, Guineva V, Atanasov D (2007) Long-term variations in the correlation between NAO and solar activity: the importance of north–south solar activity asymmetry for atmospheric circulation. Adv Space Res 40:1152–1166. doi:10.1016/j.asr.2007.02.091

    Article  Google Scholar 

  • Ghasemi AR, Khalili D (2006) The influence of the Arctic Oscillation on winter temperatures in Iran. Theor Appl Climatol 85:149–164. doi:10.1007/s00704-005-0186-4

    Article  Google Scholar 

  • Hatzaki M, Flocas HA, Asimakopoulos DN, Maheras P (2007) The eastern Mediterranean teleconnection pattern: identification and definition. Int J Climatol 27:727–737. doi:10.1002/joc.1429

    Article  Google Scholar 

  • Helama S, Holopainen J (2012) Spring temperature variability relative to the North Atlantic Oscillation and sunspots—a correlation analysis with a Monte Carlo implementation. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:128–134. doi:10.1016/j.palaeo.2012.02.013

    Article  Google Scholar 

  • Huang J, Tan B, Suo L, Hu Y (2007) Monthly changes in the influence of the Arctic Oscillation on surface air temperature over China. Adv Atmos Sci 24:799–807. doi:10.1007/s00376-007-0799-x

    Article  Google Scholar 

  • Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668. doi:10.1029/96GL00459

    Article  Google Scholar 

  • Hurrell JW (2000) Climate: North Atlantic and Arctic Oscillation (NAO/AO). Encyclopaedia of Atmospheric Sciences. Academic Press, Boulder

    Google Scholar 

  • Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78:28–41. doi:10.1016/j.marsys.2008.11.026

    Article  Google Scholar 

  • IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. IPCC, Ginebra

  • IPCC (2013) Climate change 2013: the physical science basis. Working group I contribution to the IPCC 5th assessment report—changes to the underlying scientific/technical assessment. IPCC, Stockholm

    Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGis geostatistical analyst. ESRI, New York

  • Joliffe IT, Philipp A (2010) Some recent developments in cluster analysis. Phys Chem Earth 35:309–315. doi:10.1016/j.pce.2009.07.014

    Article  Google Scholar 

  • Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P

    Article  Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (2003) Pressure-based measures of the North Atlantic Oscillation (NAO): a comparison and am assessment of changes in the strength of the NAO and in its influence on surface climate parameters. Geophys Monogr (North Atlantic Oscillation Clim Significance Environ Impact) 134:51–62

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151. doi:10.1177/001316446002000116

    Article  Google Scholar 

  • Ki-Seon C, Sung-Dae K, Hae-Dong K (2012) Possible relationship between North Korean total rainfall and Arctic Oscillation in May. Theor Appl Climatol 112:483–494. doi:10.1007/s00704-012-0738-3

    Google Scholar 

  • Kryjov VN (2002) The influence of the winter Arctic Oscillation on the Northern Russia spring temperature. Int J Climatol 22:779–785. doi:10.1002/joc.746

    Article  Google Scholar 

  • Linderholm HW, Folland CK, Hurrell JW (2008) Reconstructing Summer North Atlantic Oscillation (SNAO) variability over the last five centuries. In: Elferts D, Brumelis G, Gärtner H, Helle G, Schieser G (eds) Tree rings in archaeology. Climatology and Ecology 6:8–16

  • López-Bustins J, Martín-Vide J, Sánchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Chang 63(2–3):171–176. doi:10.1016/j.gloplacha.2007.09.002

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, El Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Glob Planet Chang 77:62–76. doi:10.1016/j.gloplacha.2011.03.003

    Article  Google Scholar 

  • Lucio PS, Serrano AI, Deus RJR (2007) Statistical quality control for local-scale extreme temperatures. Case study: Lisbon, Portugal. Meteorol Appl 14:275–290. doi:10.1002/met.30

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi:10.1002/joc.693

    Article  Google Scholar 

  • Martín-Vide J, López-Bustins J (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475. doi:10.1002/joc.1388

    Article  Google Scholar 

  • Moore GWK, Renfrew IA (2012) Cold European winters: interplay between the NAO and the East Atlantic mode. Atmos Sci Lett 13:1–8. doi:10.1002/asl.356

    Article  Google Scholar 

  • Muñoz-Díaz D, Rodrigo FS (2004) Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: comparison. Ann Geophys 22:1435–1448. doi:10.5194/angeo-22-1435-2004

    Article  Google Scholar 

  • Muñoz-Díaz D, Rodrigo FS (2006) Seasonal rainfall variations in Spain (1912–2000) and their links to atmospheric circulation. Atmos Res 81(1):94–110. doi:10.1016/j.atmosres.2005.11.005

    Article  Google Scholar 

  • Nesterov ES (2009) East Atlantic oscillation of the atmospheric circulation. Russ Meteorol Hydrol 34(12):794–800. doi:10.3103/S1068373909120048

    Article  Google Scholar 

  • (NOAA) National Oceanic and Atmospheric Administration (2014) East Atlantic. Available at http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml

  • Oliva M, López-Bustins JA, Barriendos M, Muedra C, Martín-Vide J (2006) Reconstrucción histórica de la Oscilación del Mediterráneo Occidental (WeMO) e inundaciones en el levante peninsular (1500–2000). In: Cuadrat Prats JM, Saz Sánchez MA, Vicente Serrano SM, Lanjeri S, de Luis Arrillaga M, González-Hidalgo JC (eds), Clima, Sociedad y Medio Ambiente. Publicaciones de la Asociación Española de Climatología, AEC, Serie A, n° 5, Zaragoza, pp. 241–250

  • Osborn TJ (2011) Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather 66:19–21. doi:10.1002/wea.660

    Article  Google Scholar 

  • Palamara DR, Bryant EA (2004) Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere. Ann Geophys 22:725–731. doi:10.5194/angeo-22-725-2004

    Article  Google Scholar 

  • Pandžić K, Likso T (2010) Homogeneity of average annual air temperature time series for Croatia. Int J Climatol 30:1215–1225. doi:10.1002/joc.1922

    Google Scholar 

  • Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517. doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T

    Article  Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2000) An analysis of the variability of the North Atlantic Oscillation in the time and the frequency domains. Int J Climatol 20:1675–1692. doi:10.1002/1097-0088(20001130)20:14<1675::AID-JOC564>3.0.CO;2-C

    Article  Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2001) The Association between ENSO and Winter Atmospheric Circulation and Temperature in the North Atlantic Region. J Clim 14:3408–3420. doi:10.1175/1520-0442(2001)014<3408:TABEAW>2.0.CO;2

    Article  Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2001b) A study of NAO variability and its possible non-linear influences on European surface temperature. Clim Dyn 17:701–715. doi:10.1007/s003820000137

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS (2008) A precipitation-based regionalization for Western Iran and regional drought variability. Hydrol Earth Syst Sci 12:1309–1321. doi:10.5194/hessd-5-2133-2008

    Article  Google Scholar 

  • Rigor IG, Wallace JM (2004) Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31, L09401. doi:10.1029/2004GL019492

    Article  Google Scholar 

  • Ríos-Cornejo D, Penas Á, del Río S (2012) Comparative analysis of mean temperature trends in continental Spain over the period 1961–2010. Int J Geobot Res 2:41–85. doi:10.5616/ijgr120005

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Rodríguez-Puebla C (2010) Teleconexiones climáticas en el entorno de la Península Ibérica. Predictabilidad y cambios esperados. In: Pérez FF, Boscolo R (eds), Clima en España: pasado, presente y futuro. Informe de evaluación del cambio climático regional. CLIVAR-España

  • Rodríguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18(3):299–316. doi:10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L

    Article  Google Scholar 

  • Rodríguez-Puebla C, Encinas AH, García-Casado LA, Nieto S (2010) Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim Chang 100:667–684. doi:10.1007/s10584-009-9721-0

    Article  Google Scholar 

  • Rogers JC, Van Loon H (1979) The seesaw in winter temperatures between Greenland and Northern Europe Part II: some oceanic and atmospheric effects in middle and high altitudes. Mon Weather Rev 107:509–519. doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2

    Article  Google Scholar 

  • Romero R, Sumner G, Ramis C, Genoves A (1999) A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int J Climatol 19:765–785. doi:10.1002/(SICI)1097-0088(19990615)19:7<765::AID-JOC388>3.0.CO;2-T

    Article  Google Scholar 

  • Sáenz J, Rodríguez-Puebla C, Fernández J, Zubillaga J (2001) Interpretation of interannual winter temperature variations over southwestern Europe. J Geophys Res 106:20641–20651. doi:10.1029/2001JD900247

    Article  Google Scholar 

  • Sáenz J, Zubillaga J, Rodríguez-Puebla C (2001b) Interannual winter temperature variability in the north of the Iberian Peninsula. Clim Res 16(3):169–179. doi:10.1002/joc.699

    Article  Google Scholar 

  • Sánchez-Lorenzo A, Calbó J, Martín-Vide J (2008) Spatial and temporal trends in sunshine duration over western Europe (1938–2004). J Clim 21:6089–6098. doi:10.1175/2008JCLI2442.1

    Article  Google Scholar 

  • Sánchez-Lorenzo A, Calbó J, Brunetti M, Deser C (2009) Dimming/brightening over the Iberian Peninsula: trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J Geophys Res 114:D00D09. doi:10.1029/2008JD011394

    Google Scholar 

  • Scholz D, Frisia S, Borsato A, Spötl C, Fohlmeister J, Mudelsee M, Miorandi R, Mangini A (2012) Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data. Clim Past 8:1367–1383. doi:10.5194/cp-8-1367-2012

    Article  Google Scholar 

  • Shabbar A, Huang J, Higuchi K (2001) The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int J Climatol 21:355–369. doi:10.1002/joc.612

    Article  Google Scholar 

  • Sheng Y, ChunYuan W (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218. doi:10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  • Štěpánek P (2003) Homogeneización de las series de temperatura del aire de la República Checa durante el periodo instrumental. Geographicalia 43:5–24

    Google Scholar 

  • Tayanç M, Dalfes NH, Karaca M, Yenigün O (1998) A comparative assessment of different methods for detecting inhomogeneities in Turkish temperature data set. Int J Climatol 18(5):561–578. doi:10.1002/(SICI)1097-0088(199804)18:5<561::AID-JOC249>3.0.CO;2-Y

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016. doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

    Article  Google Scholar 

  • Tomozeiu R, Busuioc A, Stefan S (2002) Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation. Int J Climatol 22(10):1181–1196. doi:10.1002/joc.785

    Article  Google Scholar 

  • Tonkaz T, Centin M, Tülücü K (2007) The impact of water resources development projects on water vapor pressure trends in a semi-arid region, Turkey. Clim Chang 82:195–209. doi:10.1007/s10584-006-9160-0

    Article  Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34, L15702. doi:10.1029/2007GL030524

    Article  Google Scholar 

  • Tuomenvirta H (2001) Homogeneity adjustments of temperature and precipitation series-Finnish and Nordic data. Int J Climatol 21(4):495–506. doi:10.1002/joc.616

    Article  Google Scholar 

  • Türkeș M, Erlat E (2008) Influence of the Arctic Oscillation on the variability of winter mean temperatures in Turkey. Theor Appl Climatol 92:75–85. doi:10.1007/s00704-007-0310-8

    Article  Google Scholar 

  • Türkeş M, Koc T, Sariş F (2009) Spatiotemporal variability of precipitation total series over Turkey. Int J Climatol 29:1056–1074. doi:10.1002/joc.1768

    Article  Google Scholar 

  • Von Storch H, Zwiers FC (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge. ISBN 0 521 45071 3

  • Wanner H, Brünnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–381. doi:10.1023/A:1014217317898

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. doi:10.1080/01621459.1963.10500845

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–682. doi:10.1002/joc.906

    Article  Google Scholar 

  • Woolings T, Blackburn M (2011) The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J Clim 25:886–902. doi:10.1175/JCLI-D-11-00087.1

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhou Y, Zheng D, Zhao M, Chao BF (1998) Interannual polar motion with relation to the North Atlantic Oscillation. Glob Planet Chang 18:79–84. doi:10.1016/S0921-8181(98)00008-3

    Article  Google Scholar 

Download references

Acknowledgments

We would first like to thank the University of León for funding the grant to David Ríos Cornejo. We are also grateful to AEMET (Agencia Estatal de Meteorología) for providing the climate data and to Joan Albert López-Bustins for kindly supplying the WeMO data. We acknowledge the contribution of Prudence Brooke-Turner (M.A. Cantab./University of Cambridge) for her help with revising the English text. We also thank anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara del Río.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R. et al. Links between teleconnection patterns and mean temperature in Spain. Theor Appl Climatol 122, 1–18 (2015). https://doi.org/10.1007/s00704-014-1256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1256-2

Keywords

Navigation