Skip to main content
Log in

Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study examines the effect of autocorrelation on step and monotonic trends in seasonal and annual rainfall. Initially, for step change, modified-Pettitt test is applied in two ways. First, using the corrected and unbiased trend-free-pre-whitening (TFPWcu) approach. Second, using a new approach in which time series is modelled by intervention analysis for modified Pettitt test. Subsequently, for monotonic trends, Mann–Kendall (MK) and six approaches of modified Mann–Kendall (MMK) test are applied to NCDC data for period 1901–2012 and its sub-periods. Approaches of MMK include pre-whitening (PW), trend-free-pre-whitening (TFPW), TFPWcu, two Variance Correction Approaches (VCAs) based on empirical formula (VCA:CF1) and Monte-Carlo-Simulations (VCA:CF2) and long term persistence (MK-LTP). A single change point is identified in 1970 for annual and monsoon rainfall from original and modified-Pettitt’s test using TFPWcu, while time series modelling approach has not exhibited any change point. Process shift in rainfall series is also studied using CUSUM and multiple change points are identified using Segment-Neighbourhood method. Outcomes of MMK show that TFPWcu is able to efficiently limit the effect of autocorrelation and may be preferred over PW and TFPW. The VCA:CF2 is not dependent on whole autocorrelation structure and corrects variance of all data series using lag-1 autocorrelation and may be preferred over VCA:CF1. MK-LTP considers long term persistence and it has exhibited presence of weaker trends than exhibited by other approaches. VCA:CF2 and MK-LTP are used to study trends of rainfall in Dehradun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adarsh S, Janga Reddy M (2015) Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int J Climatol 35(6):1107–1124

    Article  Google Scholar 

  • Agha OMM, Şarlak N (2016) Spatial and temporal patterns of climate variables in Iraq. Arab J Geosci 9(4):1–11

    Article  Google Scholar 

  • Ahmad I, Tang D, Wang T, Wang M, Wagan B (2015) Precipitation trends over time using Mann–Kendall and spearman’s rho tests in swat river basin Pakistan. Adv Meteorol 12:2015

    Google Scholar 

  • Auger IE, Lawrence CE (1989) Algorithms for the optimal identification of segment neighborhoods. Bull Math Biol 51(1):39–54

    Article  CAS  Google Scholar 

  • Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66(1):47–78

    Article  Google Scholar 

  • Basarin B, Lukić T, Pavić D, Wilby RL (2016) Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrol Process. doi:10.1002/hyp.10863

    Google Scholar 

  • Basistha A, Arya DS, Goel NK (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol 29(4):555–572

    Article  Google Scholar 

  • Bayazit M (2015) Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environ Process 2:527–542

    Article  Google Scholar 

  • Bayazit M, Önöz B (2007) To prewhiten or not to prewhiten in trend analysis? Hydrol Sci J 52(4):611–624

    Article  Google Scholar 

  • Blain GC (2013) The modified Mann–Kendall test: on the performance of three variance correction approaches. Bragantia 72(4):416–425

    Article  Google Scholar 

  • Blöschl G, Merz R, Parajka J, Salinas J, Viglione A (2012) Floods in Austria. In: Kundzewicz ZW (ed) Changes in flood risk in Europe, vol 10. IAHS Special Publication, IAHS Press, Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK, pp 169–177

    Chapter  Google Scholar 

  • Box GE, Tiao GC (1975) Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc 70(349):70–79

    Article  Google Scholar 

  • Brockwell PJ, Davis RA (2006) Introduction to time series and forecasting. Springer, Berlin

    Google Scholar 

  • Caloiero T, Coscarelli R, Ferrari E, Mancini M (2011) Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int J Climatol 31(1):44–56

    Article  Google Scholar 

  • Cao LJ, Yan ZW (2012) Progress in research on homogenization of climate data. Adv Clim Change Res 3(2):59–67

    Article  Google Scholar 

  • Ceppi P (2010) Spatial characteristics of gridded Swiss temperature trends: local and large-scale influences. Dissertation, Swiss Federal Institute of Technology Zurich, IACETH, Institute for Atmospheric and Climate Science

  • Chen Y, Deng H, Li B, Li Z, Xu C (2014) Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quatern Int 336:35–43

    Article  Google Scholar 

  • Cunderlik JM, Burn DH (2004) Linkages between regional trends in monthly maximum flows and selected climatic variables. ASCE J Hydrol Eng 9(4):246–256

    Article  Google Scholar 

  • Deka RL, Mahanta C, Nath KK, Dutta MK (2015) Spatio-temporal variability of rainfall regime in the Brahmaputra valley of North East India. Theor Appl Climatol. doi:10.1007/s00704-015-1452-8

    Google Scholar 

  • Duhan D, Pandey A (2013) Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos Res 122:136–149

    Article  Google Scholar 

  • Fu G, Yu J, Yu X, Ouyang R, Zhang Y, Wang P, Liu W, Min L (2013) Temporal variation of extreme rainfall events in China, 1961–2009. J Hydrol 487:48–59

    Article  Google Scholar 

  • Gajbhiye S, Meshram C, Mirabbasi R, Sharma SK (2015) Trend analysis of rainfall time series for Sindh river basin in India. Theor App Climatol. doi:10.1007/s00704-015-1529-4

    Google Scholar 

  • Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theo Appl Climatol 119:679–688

    Article  Google Scholar 

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 27–58

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359–373

    Article  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349(3):350–363

    Article  Google Scholar 

  • Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368(1–4):143–155

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204(1):182–196

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18(1):107–121

    Article  Google Scholar 

  • Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 27(5):803–813

    Article  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116:770–799

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S , Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. Int J Climatol 33(4):968–978

    Article  Google Scholar 

  • Jaiswal RK, Lohani AK, Tiwari HL (2015) Statistical analysis for change detection and trend assessment in climatological parameters. Environ Process 1–21

  • Joshi MM, Gregory JM, Webb MJ, Sexton DM, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30(5):455–465

    Article  Google Scholar 

  • Kattel DB, Yao T (2013) Recent temperature trends at mountain stations on the southern slope of the Central Himalayas. J Earth Syst Sci 122(1):215–227

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Khaliq MN, Ouarda TB, Gachon P, Sushama L, St-Hilaire A (2009) Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol 368(1):117–130

    Article  Google Scholar 

  • Killick R, Eckley I (2014) changepoint: an R package for changepoint analysis. J Stat Softw 58(3):1–19

    Article  Google Scholar 

  • Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–24

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5):W05–W429

    Article  Google Scholar 

  • Kumar V, Jain SK (2010) Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quatern Int 212(1):64–69

    Article  Google Scholar 

  • Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374(1):171–183

    Article  Google Scholar 

  • Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484–496

    Article  Google Scholar 

  • Kundu A, Chatterjee S, Dutta D, Siddiqui AR (2015) Meteorological trend analysis in Western Rajasthan (India) using geographical information system and statistical techniques. J Environ Earth Sci 5(5):90–99

    Google Scholar 

  • Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci J 49(1):7–19

    Article  Google Scholar 

  • Li D, Xie H, Xiong L (2014) Temporal change analysis based on data characteristics and nonparametric test. Water Resour Manag 28(1):227–240

    Article  Google Scholar 

  • Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections on extreme precipitation and floods in Europe. Hydrol Sci J 49(1):7–19

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Marriott FHC, Pope JA (1954) Bias in the estimation of autocorrelations. Biometrika 41(3–4):390–402

    Article  Google Scholar 

  • Menne MJ, Durre I, Korzeniewski B, McNeal S, Thomas K., Yin X., Anthony S, Ray R, Vose RS, Gleason BE, Houston TG, (2012a) Global historical climatology network—daily (GHCN-Daily), Version 3.22. NOAA National Climatic Data Center. Accessed on 16 Oct 2015

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012b) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29(7):897–910

    Article  Google Scholar 

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann–Kendall test: a case study of North-Eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  • Montgomery DC (2007) Introduction to statistical quality control. Wiley, New Jersey

    Google Scholar 

  • Montgomery DC, Jennings CL, Kulahci M (2015) Introduction to time series analysis and forecasting. Wiley, New Jersey

    Google Scholar 

  • Mooley DA, Parthasarathy B (1984) Fluctuations in all-India summer monsoon rainfall during 1871–1978. Clim Change 6(3):287–301

    Article  Google Scholar 

  • Mudelsee M (2001) Note on the bias in the estimation of the serial correlation coefficient of AR(1) processes. Stat Pap 42(4):517–527

    Article  Google Scholar 

  • Mukherjee S, Joshi R, Prasad RC, Vishvakarma SC, Kumar K (2015) Summer monsoon rainfall trends in the Indian Himalayan region. Theor Appl Climatol 121(3–4):789–802

    Article  Google Scholar 

  • Onyutha C (2016) Identification of sub-trends from hydro-meteorological series. Stoch Environ Res Risk Assess 30(1):189–205

    Article  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115. doi:10.2307/2333009

    Article  Google Scholar 

  • Page ES (1961) Cumulative sum charts. Technometrics 3(1):1–9. doi:10.2307/1266472

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrol 367(1):62–69

    Article  Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20(9):2011–2026

    Article  Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theoret Appl Climatol 49(4):217–224

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 126–135

  • Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90

    Article  Google Scholar 

  • Piticar A, Ristoiu D (2013) Spatial distribution and temporal variability of precipitation in northeastern Romania. Riscuri si Catastrofe 13:35–46

    Google Scholar 

  • Pranuthi G, Dubey SK, Tripathi SK, Chandniha SK (2014) Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian J Sci Technol 7(10):1573–1582

    Google Scholar 

  • Rai RK, Upadhyay A, Ojha CSP (2010) Temporal variability of climatic parameters of Yamuna River Basin: spatial analysis of persistence, trend and periodicity. Open Hydrol J 4(1):184–210

    Article  Google Scholar 

  • Rani S (2015) Assessment of annual, monthly, and seasonal trends in the long term rainfall of the Garhwal Himalayas. In: Soumyananda D (ed) Handbook of research on climate change impact on health and environmental sustainability. IGI Global, Hershey, pp 222–241

    Google Scholar 

  • Reeves J, Chen J, Wang XL, Lund R, Lu QQ (2007) A review and comparison of change point detection techniques for climate data. J Appl Meteorol Climatol 46(6):900–915

    Article  Google Scholar 

  • Sagarika S, Kalra A, Ahmad S (2014) Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J Hydrol 517:36–53

    Article  Google Scholar 

  • Saikranthi K, Rao TN, Rajeevan M, Bhaskara Rao SV (2013) Identification and validation of homogeneous rainfall zones in India using correlation analysis. J Hydrometeorol 14(1):304–317

    Article  Google Scholar 

  • Salas JD (1980) Applied modeling of hydrologic time series. Water Resources Publication

  • Sayemuzzaman M, Jha MK (2014) Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos Res 137:183–194

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2016) The importance of prewhitening in change point analysis under persistence. Stoch Env Res Risk Assess 30(2):763–777

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int J Climatol 20(3):317–327

    Article  Google Scholar 

  • Singh O, Arya P, Chaudhary BS (2014) Evaluation of rainfall trends at Dehradun in Doon valley Uttarakhand. In: Rawat MSS, Pratap D (eds) Resources environment & development of the Indian Himalaya. Transmedia Publication, Srinagar (Garhwal), Uttarakhand, pp 407–421

    Google Scholar 

  • Singh D, Jain SK, Gupta RD (2015) Trend in observed and projected maximum and minimum temperature over NW Himalayan basin. J Mt Sci 12(2):417–433

    Article  Google Scholar 

  • Some’e BS, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12

    Google Scholar 

  • Subash N, Ram Mohan HS, Sikka AK (2011) Decadal frequency and trends of extreme excess/deficit rainfall during the monsoon season over different meteorological sub-divisions of India. Hydrol Sci J 56(7):1090–1109

    Article  Google Scholar 

  • Subramanya K (1994) Engineering hydrology. Tata McGraw-Hill Education, New York

    Google Scholar 

  • Tabari H, Talaee PH (2011) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396(3):313–320

    Article  Google Scholar 

  • Tabari H, Talaee PH, Nadoushani SM, Willems P, Marchetto A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quatern Int 345:158–166

    Article  Google Scholar 

  • Tabari H, Taye MT, Willems P (2015) Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess 29(7):1751–1761

    Article  Google Scholar 

  • Taxak AK, Murumkar AR, Arya DS (2014) Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather Clim Extremes 4:50–61

    Article  Google Scholar 

  • Thiel H (1950) A rank-invariant method of linear and polynomial regression analysis, Part 3. Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A 53:1397–1412

    Google Scholar 

  • Van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 16(3):219–242

    Article  Google Scholar 

  • von Storch H (1995) Misuses of statistical analysis in climate research. In: von Storch H, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin

    Chapter  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic press, New York

    Google Scholar 

  • Xu K, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Global Planet Change 73(3):219–232

    Article  Google Scholar 

  • Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour Res 38(6): 4-1-4-7

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48(1):51–63

    Article  Google Scholar 

  • Zhahg X, Zwiers FW (2004) Comment on ‘‘Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by S. Yue and C.V. Wang. Water Resour Res 40(3):W03805

    Google Scholar 

  • Zhang C (2007) Fundamentals of environmental sampling and analysis. Wiley, New Jersey

    Book  Google Scholar 

Download references

Acknowledgements

This study has been carried out under a doctoral program supported by the Ministry of Human Resource Development, India. The first author gratefully acknowledges the MHRD, India, for financial support. Authors are thankful to the editor and anonymous reviewers for their helpful and valuable suggestions which have contributed to this improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kant Piyoosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piyoosh, A.K., Ghosh, S.K. Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stoch Environ Res Risk Assess 31, 2075–2096 (2017). https://doi.org/10.1007/s00477-016-1347-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1347-y

Keywords

Navigation