Skip to main content
Log in

Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s−1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1–1.8 g kg−1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31(13):1990–2005

    Article  Google Scholar 

  • Arnfield A (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Azorin-Molina C, Vicente-Serrano SM, TR MV, Jerez S, Sanchez-Lorenzo A, et al (2014) Homogenization and assessment of observed near–surface wind speed trends over Spain and Portugal, 1961–2011*. J Clim 27(10):3692–3712

    Article  Google Scholar 

  • Block A, Keuler K, Schaller E (2004) Impacts of anthropogenic heat on regional climate patterns. Geophys Res Lett 31(12). doi:10.1029/2004GL019852

  • Bohnenstengel SI, Hamilton I, Davies M, Belcher SE (2014) Impact of anthropogenic heat emissions on London’s temperatures. Quart J Roy Meteorol Soc 140(679):687–698

    Article  Google Scholar 

  • Bornstein R, Lin QL (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three cases studies. Atmos Environ. doi:10.1016/S1352-2310(99)00374-X

    Google Scholar 

  • Chen F, Mitchell K, Schaake J, Xue YK, et al (1996) Modeling of land–surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:7251–7268

    Article  Google Scholar 

  • Chen F, Janjic Z, Mitchell K (1997) Impact of atmospheric surface layer parameterization in the new land–surface scheme of the NCEP mesoscale Eta numerical model. Bound–Layer Meteorol 85:391–421. doi:10.1023/A:1000531001463

    Article  Google Scholar 

  • Chen F, Kusaka H, Bornstein R, et al (2011) The integrated WRF/urban modeling system: development, evaluation, and applications to urban environmental problems. I Int J Climatol 31(2):273–288

    Article  Google Scholar 

  • Chen F, Yang XC, Zhu WP (2014) WRF simulations of urban heat island under hot–weather synoptic conditions: the case study of Hangzhou city, china. Atmos Res 138:364–377

    Article  Google Scholar 

  • Dai YF, Liu YM, Zhou LJ (2011) Observation analysis of urbanization effect on surface air temperature trends in East China. J Meteorol Sci 31(4):365–371

    Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103. doi:10.1029/2007JD008510

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two–dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Feng JM, Wang YL, Ma ZG, Liu YH (2012) Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J Clim 25(20):7187–7203. doi:10.1175/Jcli-D-11-00333.1

    Article  Google Scholar 

  • Feng JM, Wang J, Yan ZW (2014) Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China. Adv Atmos Sci 31(2):363–373

    Article  Google Scholar 

  • Ferretti R, Mastrantonio G, Argentini S, Santoleri R, Viola A (2003) A model-aided investigation of winter thermally driven circulation on the Italian Tyrrhenian coast: a case study. J Geophys Res-Atmospheres 108:4777. doi:10.1029/2003JD003424

    Article  Google Scholar 

  • Fischer EM, Oleson WK, Lawrence DM (2012) Contrasting urban and rural heat stress responses to climate change. Geophys Res Lett 39:L03705. doi:10.1029/2011GL050576

  • Giannaros TM, Melas D, Daglis IA, Keramitsoglou I, Kourtidis K (2013) Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos Environ 73:103–111

    Article  Google Scholar 

  • Giovannini L, Zardi D, de Franceschi M, Chen F (2014) Numerical simulations of boundary–layer processes and urban–induced alterations in an Alpine valley. Int J Climatol 34(4):1111–1131

    Article  Google Scholar 

  • Grawe D, Thompson HL, Salmond JA, Cai XM, Schlünzen KH (2013) Modeling the impact of urbanization on regional climate in the Greater London Area. Int J Climatol 33(10):2388–2401

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693

    Article  Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Changes in near–surface wind speed in China: 1969–2005. Int J Climatol 31:349–358. doi:10.1002/joc.2091

    Article  Google Scholar 

  • Hong SY, Yign N, Jimy D (2006a) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341

    Article  Google Scholar 

  • Hong SY, Lim JOJ (2006b) The WRF single–moment 6–class microphysics scheme (WSM6). J Korean Meteor Soc 42:129–151

    Google Scholar 

  • Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Clim 49(9):1831–1844

    Article  Google Scholar 

  • Jin ML, Shepherd JM (2005) Inclusion of urban landscape in a climate model: how can satellite data help? Bull Am Meteorol Soc 86:681–689. doi:10.1175/BAMS-86-5-681

    Article  Google Scholar 

  • Jones PD, Groisman PY, Coughlan M, Plummer N, Wang WC, Karl TR (1990) Assessment of urbanization effects in time series of surface air temperature over land. Nature 347(6289):169–172

    Article  Google Scholar 

  • Jones PD, Lister DH, Li Q (2008) Urbanization effects in large–scale temperature records, with an emphasis on China. J Geophys Res 113:D16122. doi:10.1029/2008JD009916

  • Kang HQ, Zhu B, Zhu T, Sun JL, Ou JJ (2014) Impact of Megacity Shanghai on the urban heat-island effects over the downstream city kunshan. Bound-Layer Meteor 152:411–462. doi:10.1007/s10546-014-9927-1

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land–use change on climate. Nature 423(6939):528–531

    Article  Google Scholar 

  • Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RS (2009) The direct impact of climate change on regional labor productivity. Arch Environ Occup Health 64(4):217–227. doi:10.1080/19338240903352776

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single–layer urban canopy model for atmospheric models: comparison with multi–layer and slab models. Bound-Layer Meteor 101:329–358

  • Kusaka H, Kimura F (2004) Coupling a single–layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteor Soc Japan 82:67–80

    Article  Google Scholar 

  • Kusaka H, Nawata K, Suzuki-Parker A, Takane Y, Furuhashi N (2014) Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J Appl Meteorol Clim 53(4):824–839

    Article  Google Scholar 

  • Lee SH, Song CK, Baik JJ, Park SU (2009) Estimation of anthropogenic heat emission in the Gyeong–Inregion of Korea. Theor Appl Climatol 96:291–303

    Article  Google Scholar 

  • Li XX, Koh TY, Entekhabi D, Roth M, Panda J, Norford LK (2013) A multi–resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. J Geophys Res Atmos 118:9804–9818. doi:10.1002/jgrd.50795

    Article  Google Scholar 

  • Lin CY, Chen F, Huang JC, Chen WC, Liou YA, Chen WN, Liu SC (2008) Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos Environ 42:5635–5649

  • Lin CY, Chen WC, Chang PL, Sheng FY (2011) Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J Appl Meteorol Climatol 50:339–353. doi:10.1175/2010JAMC2504.1

    Article  Google Scholar 

  • Martine G, Marshall A (2007) State of world population 2007: Unleashing the potential of urban growth. Report. U. N. Popul Fund, New York

    Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869. doi:10.1016/S0140-6736(06)68079-3

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Miao JF, Chen D, Borne K (2007) Evaluation and comparison of Noah and Pleim–Xiu land surface models in MM5 using GÖTE2001 data: spatial and temporal variations in near–surface air temperature. J Appl Meteorol Clim 46(10):1587–1605

    Article  Google Scholar 

  • Miao SG, Chen F, LeMone MA, Tewari M, Li QC, Wang YC (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteor Climatol 48(3):484–501

    Article  Google Scholar 

  • Miao SG, Chen F, Li QC, Fan SY (2011) Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteor Climatol 50:806–825. doi:10.1175/2010JAMC2513.1

    Article  Google Scholar 

  • Mlawer Eli J, Taubman Steven J, Brown Patrick D, et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Narumi D, Kondo A, Shimoda Y (2009) Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ Res 109(4):421–431

    Article  Google Scholar 

  • Oleson KW, Bonan BG, Feddema J, Jackson T (2010) An examination of urban heat island characteristics in a global climate model. Int J Climatol 31:1848–1865. doi:10.1002/joc.2201

    Article  Google Scholar 

  • Papanastasiou DK, Melas D, Lissaridis I (2010) Study of wind field under sea breeze conditions: an application of WRF model. Atmos Res 98(1):102–117

    Article  Google Scholar 

  • Parker DE (2006) A demonstration that large–scale warming is not urban. J Clim 19(12):2882–2895. doi:10.1175/JCLI3730.1

    Article  Google Scholar 

  • Ren GY, Chu ZY, Chen ZH, Ren YY (2007) Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys Res Lett. doi:10.1029/2006GL027927

    Google Scholar 

  • Salamanca F, Martilli A, Yagüe C (2012) A numerical study of the urban heat island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int J Climatol 32(15):2372–2386

    Article  Google Scholar 

  • Shastri H, Paul S, Ghosh S, Karmakar S (2014) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos. doi:10.1002/2014JD022061

    Google Scholar 

  • Sherwood S, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci USA 107(21):9552–9555. doi:10.1073/pnas.0913352107

    Article  Google Scholar 

  • Skamarock WC et al (2008) A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN–4751STR 125 pp. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf

  • Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Observ Geoinform 8(1):34–48

    Article  Google Scholar 

  • Wan HC, Zhong Z, Yang XQ, Li XQ (2012) Ensembles to model the impact of urbanization for a summertime rainstorm process in Yangtze river delta, china. Meteorol Appl 22:105–112. doi:10.1002/met.1360

    Article  Google Scholar 

  • Wang GC, Li LQ, Wang Y, Xuan YJ, Wan XW, Kong QX, Chen HB (2004) XLS–II tethered balloon sounding system. Meteorol Sci Technol 32(4):269–273

    Google Scholar 

  • Wang HZ, Sun JN, Zhu LF, Liu P, Shen LD (2013a) Correction of wind speed measured by tethered balloon sounding system and application to evaluation the data from wind profile radar. J Meteorol Sci 33(5):485–491. doi:10.3969/2012jms.0180

    Google Scholar 

  • Wang J, Feng JM, Yan ZW, Hu YH, Jia GS (2012) Nested high–resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J Geophys Res 117:D21103. doi:10.1029/2012JD018226

  • Wang MN, Yan XD, Liu JY, Zhang XZ (2013b) The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing–Tianjin–Hebei metropolitan area. Theor Appl Climatol 114:407–416

    Article  Google Scholar 

  • Wang MN, Zhang XZ, Yan XD (2013c) Modeling the climatic effects of urbanization in the Beijing–Tianjin–Hebei metropolitan area. Theo Appl Climatol 113:377–385

    Article  Google Scholar 

  • Wang SW, Cai JN, Mu QZ, et al (2002) Modeling and diagnostic studies on the variations of the subtropical high over the western Pacific from 1880 to 1999. Adv Atmos Sci 19(6):1148–1152

    Article  Google Scholar 

  • Wang XM, Liao JB, Zhang J, Shen C, Chen WH, Xia BC, Wang TJ (2014) A numeric study of regional climate change induced by urban expansion in the Pearl River Delta, China. J Appl Meteorol Climatol 53(2):346–362

    Article  Google Scholar 

  • Willett KM, Sherwood S (2012) Exceedance of heat index thresholds for 15 regions under a warming climate using the wet–bulb globe temperature. Int J Climatol 32:161–177. doi:10.1002/joc.2257

    Article  Google Scholar 

  • Xu YY, Liu SH, Hu F (2009) Influence of Beijing urbanization on the characteristics of atmospheric boundary layer. Chinese J Atmos Sci 33(4):859–867

    Google Scholar 

  • Yang L, Smith JA, Baeck ML, Bou-Zeid E, Jessup SM, Tian F, Hu H (2014) Impact of urbanization on heavy convective precipitation under strong large–scale forcing: a case study over the Milwaukee–Lake Michigan region. J Hydrometeorol 15(1):261–278

    Article  Google Scholar 

  • Yu M, Liu YM, Dai YF, Yang AQ (2013) Impact of urbanization on boundary layer structure in Beijing. Clim Chang 120:123–136. doi:10.1007/s10584-013-0788-2

    Article  Google Scholar 

  • Zhang DL, Zheng WZ (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J Appl Meteorol 43(1):157–169

    Article  Google Scholar 

  • Zhang DL, Shou YX, Dickerson RR, Chen F (2011) Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore Corridor. J Appl Meteorol Clim 50(10):2012–2029

    Article  Google Scholar 

  • Zhang N, Gao ZQ, Wang XM, Chen Y (2010a) Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor Appl Climatol 102(3–4):331–342

    Article  Google Scholar 

  • Zhang Y, Wen XY, Jang CJ (2010b) Simulating chemistry–aerosol–cloud–radiation–climate feedbacks over the continental US using the online–coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmos Environ 44(29):3568–3582

    Article  Google Scholar 

  • Zhang YZ, Miao SG, Dai YJ, Liu YH (2013) Numerical simulation of characteristics of summer clear day boundary layer in Beijing and impact of urban underlying surface on sea breeze. Chinese J Geophys 56(8):2558–2573. doi:10.6038/cjg20130806

    Google Scholar 

Download references

Acknowledgments

This work is supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (XDB05030105, XDB05030102, XDB05030103), the National Basic Research Program of China (2014CB953802), the National Natural Science Foundation of China (40105012) and the Russian Scientific Fund under grant 14-47-00049. The authors thank the reviewer for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meigen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, M. & Wang, Y. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China. Theor Appl Climatol 125, 713–728 (2016). https://doi.org/10.1007/s00704-015-1535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1535-6

Keywords

Navigation