Skip to main content
Log in

A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56 (3):515–535. doi:10.1007/s00484-011-0453-2. WOS:000303461000010

    Article  Google Scholar 

  • Blazejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the Universal Thermal Climate Index (UTCI). Geogr Pol 86(1)

  • Fanger P (1972) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  • Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. doi:10.1007/s00484-011-0424-7. WOS:000303461000003

    Article  Google Scholar 

  • Fröhlich D, Matzarakis A (2013) Modeling of changes in thermal bioclimate: examples based on urban spaces in freiburg germany. Theor Appl Climatol 111:547–558. doi:10.1007/s00704-012-0678-y

    Article  Google Scholar 

  • Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470. doi:10.1007/s00484-011-0451-4

    Article  Google Scholar 

  • Herrmann J, Matzarakis A (2012) Mean radiant temperature in idealized urban canyons—examples from Freiburg, Germany. Int J Biometeorol 56:199–203

    Article  Google Scholar 

  • Höppe PR (1993) Heat balance modeling. Experientia 49

  • Höppe PR (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Höppe P (1984) Die energiebilanz des menschen, PhD thesis. Münchner Universitäts-Schriften, Wissenschaft, Mittelungen Nr. 49

    Google Scholar 

  • Hwang RL, Lin TP, Matzarakis A (2011). Build Environ 46(4):863–870. doi:10.1016/j.buildenv.2010.10.017

    Article  Google Scholar 

  • International Union of Physiological Sciences–Thermal Commission (2003) Glossary of terms for thermal physiology. J Therm Biol 28(1):75–106. BCI:BCI200300117033

    Article  Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428

    Article  Google Scholar 

  • Kampstra P (2008) Beanplot: A boxplot alternative for visual comparison of distributions. J Stat Softw Code Snippets 1(28):1–9

    Google Scholar 

  • Ketterer C, Ghasemi I, Reuter U, Rinke R, Kapp R, Bertram A, Matzarakis A (2013) Veränderung des thermischen bioklimas durch stadtplanerische umgestaltung. Gefahrstoffe- Reinhaltung der Luft 7-8/2013:323–329

    Google Scholar 

  • Lin TP, Matzarakis A, Hwang R L (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221. doi:10.1016/j.buildenv.2009.06.002

    Article  Google Scholar 

  • Lin TP, Tsai KT, Liao CC, Huang YC (2013) Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Build Environ 59(0):599–611. doi:10.1016/j.buildenv.2012.10.005

    Article  Google Scholar 

  • Lopes A, Lopes S, Matzarakis A, Alcoforado MJ (2011) Theinfluence of the summer sea breeze on thermal comfort in funchal (madeira). A contribution to tourism and urban planning. Meteorol Z 20 (5):553–564. doi:10.1127/0941-2948/2011/0248. WOS:000298548300010

    Article  Google Scholar 

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsletter 18:7–10

    Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84. doi:10.1007/s004840050119. WOS:000083502400004

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334. doi:10.1007/s00484-006-0061-8. WOS:000244681400008

    Article  Google Scholar 

  • Matzarakis A, De Rocco M, Najjar G (2009) Thermal bioclimate in Srasbourg—the 2003 heat wave. J Therm Biol 98:209– 220

    Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139. doi:10.1007/s00484-009-0261-0. WOS:000274903900003

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • Muthers S, Matzarakis A, Koch E (2010) Summer climate and mortality in Vienna—a human-biometeorological approach of heat-related mortality during the heat waves in 2003. Wien Klin Wochenschr 122(17–18):525–531. doi:10.1007/s00508-010-1424-z. WOS:000282225200002

    Article  Google Scholar 

  • Nastos P, Matzarakis A (2012) The effect of air temperature and physiologically equivalent temperature on mortality in Athens, Greece. Theor Appl Climatol 108:591–599

    Article  Google Scholar 

  • Staiger H, Laschewski G, Graetz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part a: scientific basics. Int J Biometeorol 56(1):165–176. doi:10.1007/s00484-011-0409-6. WOS:000298393800017

    Article  Google Scholar 

  • VDI-Kommission Reinhaltung der Luft (1988) Stadtklima und Luftreinhaltung. Tech. rep., Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Fröhlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, D., Matzarakis, A. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Climatol 124, 179–187 (2016). https://doi.org/10.1007/s00704-015-1410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1410-5

Keywords

Navigation