Skip to main content
Log in

Effects of dopamine uptake inhibitor MRZ-9547 in animal models of Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

MRZ-9547 (d-(2-(2-oxo-4(R)-phenylpyrrolidin-1-yl)-acetamide) is a drug acting at the dopamine transporter (DAT). In the present study, effects of MRZ-9547 alone and in combination with L-3,4-dihydroxyphenylalanine (L-DOPA) were investigated in rodent models predictive for efficacy in Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). In rats pre-treated with haloperidol (0.2 mg/kg i.p.), MRZ-9547 (25–100 mg/kg i.p.) dose-dependently attenuated decrease in horizontal locomotion, activity in central zone, and rearings starting at 50 mg/kg i.p. In rats depleted of monoamines by α-methyl-p-tyrosine and reserpine treatment, MRZ-9547 attenuated hypolocomotion starting at 100 mg/kg i.p. At the doses 25–100 mg/kg i.p. the drug induced dose-dependent ipsilateral rotations in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced nigrostriatal system lesions. However, MRZ-9547 enhanced contralateral rotation produced by L-DOPA given at an effective (25 mg/kg i.p.), but not at a sub-effective (6.25 mg/kg i.p.) dose. Microdialysis experiments revealed that MRZ-9547 penetrated well to the brain and did not show any pharmacokinetic interaction with L-DOPA. In unilaterally 6-OHDA-lesioned rats having developed abnormal involuntary movements (AIMs, a rodent correlate of LID) after chronic L-DOPA treatment, MRZ-9547 (50 mg/kg i.p.) did not significantly affect the AIMs expression. The results indicate that MRZ-9547 may by itself have antiparkinsonian activity at early stages of the disease, when some dopaminergic terminals are still intact. It may also enhance antiparkinsonian effect of L-DOPA. MRZ-9547 does not seem to influence the expression of LID in 6-OHDA-lesioned rats. The results support the use of MRZ-9547 in PD patients treated with L-DOPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aman MG, Singh NN (1985) Dyskinetic symptoms in profoundly retarded residents following neuroleptic withdrawal and during methylphenidate treatment. J Mental Defic Res 29(Pt 2):187–195

    Google Scholar 

  • Balazs J, Dallos G, Kereszteny A, Czobor P, Gadoros J (2011) Methylphenidate treatment and dyskinesia in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 21(2):133–138

    Article  PubMed  Google Scholar 

  • Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks DJ, Pavese N (2010) Imaging non-motor aspects of Parkinson’s disease. Prog Brain Res 184:205–218

    PubMed  Google Scholar 

  • Cenci MA, Lee CS, Bjorklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10(8):2694–2706

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Odin P (2010) The challenge of non-motor symptoms in Parkinson’s disease. Prog Brain Res 184:325–341

    PubMed  Google Scholar 

  • Chiueh CC, Moore KE (1975) Blockade by reserpine of methylphenidate-induced release of brain dopamine. J Pharmacol Exp Ther 193(2):559–563

    CAS  PubMed  Google Scholar 

  • Chopin P, Colpaert FC, Marien M (1999) Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J Pharmacol Exp Ther 288(2):798–804

    CAS  PubMed  Google Scholar 

  • Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull 69:318–326

    Article  CAS  PubMed  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179(1):76–89

    Article  CAS  PubMed  Google Scholar 

  • Devos D, Moreau C, Delval A, Dujardin K, Defebvre L, Bordet R (2013) Methylphenidate: a treatment for Parkinson’s disease? CNS Drugs 27(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22(10):1379–1389 quiz 1523

    Article  PubMed  Google Scholar 

  • Finn IB, Iuvone PM, Holtzman SG (1990) Depletion of catecholamines in the brain of rats differentially affects stimulation of locomotor activity by caffeine, D-amphetamine, and methylphenidate. Neuropharmacology 29(7):625–631

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Abrantes A, Sweet LH (2011) Fatigue in Parkinson´s disease. Expert Opin Pharmacother 12:1999–2007

    Article  PubMed  Google Scholar 

  • Harrington ME (2012) Neurobiological studies of fatigue. Prog Neurobiol 99(2):93–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewitt PA (1993) Levodopa therapeutics—new treatment strategies. Neurology 43(12 Suppl. 6):31–37

    Google Scholar 

  • Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15(1):120–132

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21(10):1595–1606

    Article  PubMed  Google Scholar 

  • Moreau C, Delval A, Defebvre L, Dujardin K, Duhamel A, Petyt G, Vuillaume I, Corvol JC, Brefel-Courbon C, Ory-Magne F, Guehl D, Eusebio A, Fraix V, Saulnier PJ, Lagha-Boukbiza O, Durif F, Faighel M, Giordana C, Drapier S, Maltete D, Tranchant C, Houeto JL, Debu B, Sablonniere B, Azulay JP, Tison F, Rascol O, Vidailhet M, Destee A, Bloem BR, Bordet R, Devos D, Parkgait II sg (2012) Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 11(7):589–596

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Carter JH, Sexton GJ (2004) The dopamine transporter: importance in Parkinson’s disease. Ann Neurol 55(6):766–773

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Carter JH, Carlson NE (2007) Effects of methylphenidate on response to oral levodopa: a double-blind clinical trial. Arch Neurol 64(3):319–323

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rats brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Reavill C, Jenner P, Marsden CD (1983) Differentiation of dopamine agonists using drug-induced rotation in rats with unilateral or bilateral 6-hydroxydopamine destruction of ascending dopamine pathways. Biochem Pharmacol 32(5):865–870

    Article  CAS  PubMed  Google Scholar 

  • Sayers AC, Handley SL (1973) A study of the role of catecholamines in the response to various central stimulants. Eur J Pharmacol 23(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Wichmann T, Factor SA, DeLong MR (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37(1):213–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W (2014) The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol 25:1–12

    Google Scholar 

  • Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 99(3):306–314

    Article  PubMed  Google Scholar 

  • Zvejniece L, Svalbe B, Veinberg G, Grinberga S, Vorona M, Kalvinsh I, Dambrova M (2011) Investigation into stereoselective pharmacological activity of phenotropil. Basic Clin Pharmacol Toxicol 109(5):407–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are or were at the time of experimental work employees of Merz Pharmaceuticals which was developing MRZ-9547.

Conflict of interest

No further conflicts of interest are applying.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Danysz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekundy, A., Mela, F., Hofmann, M. et al. Effects of dopamine uptake inhibitor MRZ-9547 in animal models of Parkinson’s disease. J Neural Transm 122, 809–818 (2015). https://doi.org/10.1007/s00702-014-1326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1326-8

Keywords

Navigation