Skip to main content

Advertisement

Log in

Degenerative cervical myelopathy: Where have we been? Where are we now? Where are we going?

  • Mini-review (by Invitation)
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Degenerative cervical myelopathy (DCM), a recently coined term, encompasses a group of age-related and genetically associated pathologies that affect the cervical spine, including cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament (OPLL). Given the significant contribution of DCM to global disease and disability, there are worldwide efforts to promote research and innovation in this area. An AO Spine effort termed ‘RECODE-DCM’ was initiated to create an international multistakeholder consensus group, involving patients, caregivers, physicians and researchers, to focus on launching actionable discourse on DCM. In order to improve the management, treatment and results for DCM, the RECODE-DCM consensus group recently identified ten priority areas for translational research. The current article summarizes recent advancements in the field of DCM. We first discuss the comprehensive definition recently refined by the RECODE-DCM group, including steps taken to arrive at this definition and the supporting rationale. We then provide an overview of the recent advancements in our understanding of the pathophysiology of DCM and modalities to clinically assess and diagnose DCM. A focus will be set on advanced imaging techniques that may offer the opportunity to improve characterization and diagnosis of DCM. A summary of treatment modalities, including surgical and nonoperative options, is then provided along with future neuroprotective and neuroregenerative strategies. This review concludes with final remarks pertaining to the genetics involved in DCM and the opportunity to leverage this knowledge toward a personalized medicine approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adachi Y, Oyama D, Kawai J, Kawabata S, Uehara G (2013) Spinal cord evoked magnetic field measurement using a magnetospinography system equipped with a cryocooler. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf 2013:4426–4429

    Google Scholar 

  2. Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D et al (2020) The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 9(12):1509–1530

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akter F, Yu X, Qin X, Yao S, Nikrouz P, Syed YA et al (2020) The pathophysiology of degenerative cervical myelopathy and the physiology of recovery following decompression. Front Neurosci 14:138

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI et al (1993) Experimental chronic compressive cervical myelopathy. J Neurosurg 79(4):550–61

    Article  CAS  PubMed  Google Scholar 

  5. Amboni M, Barone P, Hausdorff JM (2013) Cognitive contributions to gait and falls: evidence and implications. Mov Disord Off J Mov Disord Soc 28(11):1520–1533

    Article  Google Scholar 

  6. Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM et al (2013) Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine 38(22 Suppl 1):S149-160

    Article  PubMed  Google Scholar 

  7. Association of a BMP9 Haplotype with Ossification of the Posterior Longitudinal Ligament (OPLL) in a Chinese Population | PLOS ONE [Internet]. [cited 2022 Oct 17]. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040587

  8. Badhiwala JH, Witiw CD, Nassiri F, Jaja BNR, Akbar MA, Mansouri A et al (2018) Patient phenotypes associated with outcome following surgery for mild degenerative cervical myelopathy: a principal component regression analysis. Spine J Off J North Am Spine Soc 18(12):2220–2231

    Article  Google Scholar 

  9. Badhiwala JH, Witiw CD, Nassiri F, Akbar MA, Mansouri A, Wilson JR et al (2019) Efficacy and safety of surgery for mild degenerative cervical myelopathy: results of the AOSpine North America and international prospective multicenter studies. Neurosurgery 84(4):890–897

    Article  PubMed  Google Scholar 

  10. Badhiwala JH, Leung SN, Ellenbogen Y, Akbar MA, Martin AR, Jiang F et al (2020) A comparison of the perioperative outcomes of anterior surgical techniques for the treatment of multilevel degenerative cervical myelopathy. J Neurosurg Spine 12:1–8

    Google Scholar 

  11. Banaszek A, Bladowska J, Szewczyk P, Podgórski P, Sąsiadek M (2014) Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 23(7):1523–1530

    Article  Google Scholar 

  12. Banerjee A, Mowforth OD, Nouri A, Budu A, Newcombe V, Kotter MRN et al (2022) The prevalence of degenerative cervical myelopathy-related pathologies on magnetic resonance imaging in healthy/asymptomatic individuals: a meta-analysis of published studies and comparison to a symptomatic cohort. J Clin Neurosci Off J Neurosurg Soc Australas 99:53–61

    Google Scholar 

  13. Bansal V, Kalita J, Misra UK (2006) Diabetic neuropathy. Postgrad Med J 82(964):95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bednarík J, Kadanka Z, Vohánka S, Stejskal L, Vlach O, Schröder R (1999) The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine 24(15):1593–1598

    Article  PubMed  Google Scholar 

  15. Bednarik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O et al (2008) Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J 17(3):421–431

    Article  PubMed  PubMed Central  Google Scholar 

  16. Binch ALA, Fitzgerald JC, Growney EA, Barry F (2021) Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 17(3):158–175

    Article  PubMed  Google Scholar 

  17. Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S (1990) Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Jt Surgery 72(8):1178–84

    Article  CAS  Google Scholar 

  18. Boerger TF, Hyngstrom AS, Furlan JC, Kalsi-Ryan S, Curt A, Kwon BK et al (2022) Developing peri-operative rehabilitation in degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 6]: an unexplored opportunity? Glob Spine J 12(1 Suppl):97S-108S

    Article  Google Scholar 

  19. Bryson HM, Fulton B, Riluzole BP (1996) A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs 52(4):549–63

    Article  CAS  PubMed  Google Scholar 

  20. Budzik JF, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A (2011) Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol 21(2):426–433

    Article  PubMed  Google Scholar 

  21. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22(4):233–241

    Article  CAS  PubMed  Google Scholar 

  22. Cook C, Roman M, Stewart KM, Leithe LG, Isaacs R (2009) Reliability and diagnostic accuracy of clinical special tests for myelopathy in patients seen for cervical dysfunction. J Orthop Sports Phys Ther 39(3):172–178

    Article  PubMed  Google Scholar 

  23. Cook CE, Wilhelm M, Cook AE, Petrosino C, Isaacs R (2011) Clinical tests for screening and diagnosis of cervical spine myelopathy: a systematic review. J Manipulative Physiol Ther 34(8):539–546

    Article  PubMed  Google Scholar 

  24. Cui JL, Li X, Chan TY, Mak KC, Luk KDK, Hu Y (2015) Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24(1):41–47

    Article  Google Scholar 

  25. Cumming TB, Marshall RS, Lazar RM (2013) Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int J Stroke Off J Int Stroke Soc 8(1):38–45

    Article  Google Scholar 

  26. Davies BM, Mowforth OD, Smith EK, Kotter MR (2018) Degenerative cervical myelopathy. BMJ 360:k186

    Article  PubMed  PubMed Central  Google Scholar 

  27. Davies BM, Khan DZ, Barzangi K, Ali A, Mowforth OD, Nouri A, et al (2022) We choose to call it ‘degenerative cervical myelopathy’: findings of AO Spine RECODE-DCM, an international and multi-stakeholder partnership to agree a standard unifying term and definition for a disease. Glob Spine J. 21925682221111780

  28. Davies BM, Khan DZ, Mowforth OD, McNair AGK, Gronlund T, Kolias AG et al (2019) RE-CODE DCM (REsearch Objectives and Common Data Elements for Degenerative Cervical Myelopathy): a consensus process to improve research efficiency in DCM, through establishment of a standardized dataset for clinical research and the definition of the research priorities. Glob Spine J 9(1):65S-76S

    Article  Google Scholar 

  29. Davies BM, Phillips R, Clarke D, Furlan JC, Demetriades AK, Milligan J et al (2022) Establishing the socio-economic impact of degenerative cervical myelopathy is fundamental to improving outcomes [AO Spine RECODE-DCM Research Priority Number 8]. Glob Spine J 12(1):122S-129S

    Article  Google Scholar 

  30. Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS et al (2022) A new framework for investigating the biological basis of degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: mechanical stress, vulnerability and time. Glob Spine J 12(1):78S-96S

    Article  Google Scholar 

  31. Demir A, Ries M, Moonen CTW, Vital JM, Dehais J, Arne P et al (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229(1):37–43

    Article  PubMed  Google Scholar 

  32. Desimone A, Hong J, Brockie ST, Yu W, Laliberte AM, Fehlings MG (2021) The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight 6(15):e149227

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dong Y, Holly LT, Albistegui-Dubois R, Yan X, Marehbian J, Newton JM et al (2008) Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy: laboratory investigation. J Neurosurg Spine 9(6):538–551

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eck JC, Humphreys SC, Lim TH, Jeong ST, Kim JG, Hodges SD et al (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 27(22):2431–2434

    Article  PubMed  Google Scholar 

  35. Ellingson BM, Salamon N, Grinstead JW, Holly LT (2014) Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J Off J North Am Spine Soc 14(11):2589–2597

    Article  Google Scholar 

  36. Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P et al (2015) A global perspective on the outcomes of surgical decompression in patients with cervical spondylotic myelopathy: results from the prospective multicenter AOSpine international study on 479 patients. Spine 40(17):1322–1328

    Article  PubMed  Google Scholar 

  37. Fehlings MG, Tetreault L, Nater A, Choma T, Harrop J, Mroz T et al (2015) The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery 77(Suppl 4):1

    Article  Google Scholar 

  38. Fehlings MG, Tetreault LA, Riew KD, Middleton JW, Aarabi B, Arnold PM et al (2017) A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression. Glob Spine J 7(3 Suppl):70S-83S

    Article  Google Scholar 

  39. Fehlings MG, Santaguida C, Tetreault L, Arnold P, Barbagallo G, Defino H et al (2017) Laminectomy and fusion versus laminoplasty for the treatment of degenerative cervical myelopathy: results from the AOSpine North America and International prospective multicenter studies. Spine J 17(1):102–108

    Article  PubMed  Google Scholar 

  40. Fehlings MG, Tetreault LA, Aarabi B, Anderson P, Arnold PM, Brodke DS et al (2017) A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the type and timing of rehabilitation. Glob Spine J 7(3 Suppl):231S-238S

    Article  Google Scholar 

  41. Fehlings MG, Badhiwala JH, Ahn H, Farhadi HF, Shaffrey CI, Nassr A et al (2021) Safety and efficacy of riluzole in patients undergoing decompressive surgery for degenerative cervical myelopathy (CSM-Protect): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Neurol 20(2):98–106

    Article  CAS  PubMed  Google Scholar 

  42. Fujiyoshi T, Yamazaki M, Kawabe J, Endo T, Furuya T, Koda M et al (2008) A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine 33(26):E990-993

    Article  PubMed  Google Scholar 

  43. Gao SJ, Yuan X, Jiang XY, Liu XX, Liu XP, Wang YF et al (2013) Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy. Eur J Radiol 82(11):1940–1945

    Article  PubMed  Google Scholar 

  44. Garg K, Aggarwal A (2022) Effect of cervical decompression on atypical symptoms cervical spondylosis—a narrative review and meta-analysis. World Neurosurg 157:207-217.e1

    Article  PubMed  Google Scholar 

  45. Gharooni AA, Kwon BK, Fehlings MG, Boerger TF, Rodrigues-Pinto R, Koljonen PA et al (2022) Developing novel therapies for degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 7]: opportunities from restorative neurobiology. Glob Spine J 12(1):109S-121S

    Article  Google Scholar 

  46. Ghogawala Z, Terrin N, Dunbar MR, Breeze JL, Freund KM, Kanter AS et al (2021) Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy: a randomized clinical trial. JAMA 325(10):942–951

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goacher E, Phillips R, Mowforth OD, Yordanov S, Pereira EAC, Gardner A et al (2022) Hospitalisation for degenerative cervical myelopathy in England: insights from the National Health Service Hospital Episode Statistics 2012 to 2019. Acta Neurochir (Wien) 164(6):1535–1541

    Article  PubMed  Google Scholar 

  48. Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B et al (2004) Long-term follow-up after interbody fusion of the cervical spine. Clin Spine Surg 17(2):79–85

    Google Scholar 

  49. Gondar R, Nouri A, Jannelli G, Schaller K, Tessitore E (2020) Does spondylolisthesis affect severity and outcome of degenerative cervical myelopathy? A systematic review and meta-analysis. Glob Spine J 16:2192568220960452

    Google Scholar 

  50. Grabher P, Mohammadi S, Trachsler A, Friedl S, David G, Sutter R et al (2016) Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep 20(6):24636

    Article  Google Scholar 

  51. Haddas R, Cox J, Belanger T, Ju KL, Derman PB (2019) Characterizing gait abnormalities in patients with cervical spondylotic myelopathy: a neuromuscular analysis. Spine J Off J North Am Spine Soc 19(11):1803–1808

    Article  Google Scholar 

  52. Harrop JS, Naroji S, Maltenfort M, Anderson DG, Albert T, Ratliff JK et al (2010) Cervical myelopathy: a clinical and radiographic evaluation and correlation to cervical spondylotic myelopathy. Spine 35(6):620–624

    Article  PubMed  Google Scholar 

  53. Hejrati N, Fehlings MG (2021) A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 1(60):331–340

    Article  Google Scholar 

  54. Hejrati N, Moghaddamjou A, Marathe N, Fehlings MG (2021) Degenerative cervical myelopathy: towards a personalized approach. Can J Neurol Sci 25:1–12

    Google Scholar 

  55. Heshmatollah A, Darweesh SKL, Dommershuijsen LJ, Koudstaal PJ, Ikram MA, Ikram MK (2020) Quantitative gait impairments in patients with stroke or transient ischemic attack: a population-based approach. Stroke 51(8):2464–2471

    CAS  PubMed  Google Scholar 

  56. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J Off J North Am Spine Soc 4(6 Suppl):190S-194S

    Article  Google Scholar 

  57. Hilton B, Gardner EL, Jiang Z, Tetreault L, Wilson JRF, Zipser CM et al (2022) Establishing diagnostic criteria for degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 3]. Glob Spine J 12(1):55S-63S

    Article  Google Scholar 

  58. Holly LT, Dong Y, Albistegui-Dubois R, Marehbian J, Dobkin B (2007) Cortical reorganization in patients with cervical spondylotic myelopathy. J Neurosurg Spine 6(6):544–551

    Article  PubMed  PubMed Central  Google Scholar 

  59. Holly LT, Freitas B, McArthur DL, Salamon N (2009) Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine 10(3):194–200

    Article  PubMed  Google Scholar 

  60. Horak T, Horakova M, Svatkova A, Kadanka Z, Kudlicka P, Valosek J et al (2021) In vivo molecular signatures of cervical spinal cord pathology in degenerative compression. J Neurotrauma 38(21):2999–3010

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y et al (2012) Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci MRMS Off J Jpn Soc Magn Reson Med 11(4):221–233

    Google Scholar 

  62. Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM et al (2021) The restless spinal cord in degenerative cervical myelopathy. AJNR Am J Neuroradiol 42(3):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones JGA, Cen SY, Lebel RM, Hsieh PC, Law M (2013) Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol 34(2):471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jutzeler CR, Ulrich A, Huber B, Rosner J, Kramer JLK, Curt A (2017) Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J Neurotrauma 34(12):2045–2053

    Article  PubMed  Google Scholar 

  65. Kalsi-Ryan S, Rienmueller AC, Riehm L, Chan C, Jin D, Martin AR et al (2020) Quantitative assessment of gait characteristics in degenerative cervical myelopathy: a prospective clinical study. J Clin Med 9(3):E752

    Article  Google Scholar 

  66. Karadimas SK, Moon ES, Yu WR, Satkunendrarajah K, Kallitsis JK, Gatzounis G et al (2013) A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis 54:43–58

    Article  CAS  PubMed  Google Scholar 

  67. Karadimas SK, Laliberte AM, Tetreault L, Chung YS, Arnold P, Foltz WD et al (2015) Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci Transl Med 7(316):316ra194

    Article  PubMed  Google Scholar 

  68. Kerkovský M, Bednarík J, Dušek L, Sprláková-Puková A, Urbánek I, Mechl M et al (2012) Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine 37(1):48–56

    Article  PubMed  Google Scholar 

  69. Keřkovský M, Bednařík J, Jurová B, Dušek L, Kadaňka Z, Kadaňka Z, et al (2017) Spinal cord MR diffusion properties in patients with degenerative cervical cord compression. J Neuroimaging [Internet]. [cited 2022 Oct 3];(1). Available from: https://is.muni.cz/publication/1365567/en/Spinal-Cord-MR-Diffusion-Properties-in-Patients-with-Degenerative-Cervical-Cord-Compression/Kerkovsky-Bednarik-Jurova-Dusek

  70. Khan O, Badhiwala JH, Witiw CD, Wilson JR, Fehlings MG (2021) Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy. Spine J 21(10):1659–1669

    Article  PubMed  Google Scholar 

  71. Kotter MR. Regeneration in cervical degenerative myelopathy—a multi-centre, double-blind, randomised, placebo controlled trial assessing the efficacy of Ibudilast as an adjuvant treatment to decompressive surgery for degenerative cervical myelopathy [Internet]. clinicaltrials.gov; 2021 Dec [cited 2022 Oct 3]. Report No.: NCT04631471. Available from: https://clinicaltrials.gov/ct2/show/NCT04631471

  72. LaBan MM, Green ML (2004) Concurrent (tandem) cervical and lumbar spinal stenosis: a 10-yr review of 54 hospitalized patients. Am J Phys Med Rehabil 83(3):187–190

    Article  PubMed  Google Scholar 

  73. Laliberte AM, Karadimas SK, Vidal PM, Satkunendrarajah K, Fehlings MG (2021) Mir21 modulates inflammation and sensorimotor deficits in cervical myelopathy: data from humans and animal models. Brain Commun 3(1):fcaa234

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee C, Lee J, Kang J d, Hyun S, Kim K, Jahng T, et al (2015) Laminoplasty versus laminectomy and fusion for multilevel cervical myelopathy: a meta-analysis of clinical and radiological outcomes. J Neurosurg Spine

  75. Li X, Cui JL, Mak KC, Luk KDK, Hu Y (2014) Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine 39(10):E615-622

    Article  PubMed  Google Scholar 

  76. Lindberg PG, Feydy A, Sanchez K, Rannou F, Maier MA (2012) Measures of spinal canal stenosis and relationship to spinal cord structure in patients with cervical spondylosis. J Neuroradiol J Neuroradiol 39(4):236–242

    Article  CAS  PubMed  Google Scholar 

  77. Liu H, MacMillian EL, Jutzeler CR, Ljungberg E, MacKay AL, Kolind SH et al (2017) Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology 89(6):602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Long HQ, Li GS, Lin EJ, Xie WH, Chen WL, Luk KDK et al (2013) Is the speed of chronic compression an important factor for chronic spinal cord injury rat model? Neurosci Lett 545:75–80

    Article  CAS  PubMed  Google Scholar 

  79. Maki S, Koda M, Ota M, Oikawa Y, Kamiya K, Inada T et al (2018) Reduced field-of-view diffusion tensor imaging of the spinal cord shows motor dysfunction of the lower extremities in patients with cervical compression myelopathy. Spine 43(2):89–96

    Article  PubMed  Google Scholar 

  80. Malone A, Meldrum D, Gleeson J, Bolger C (2013) Electromyographic characteristics of gait impairment in cervical spondylotic myelopathy. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22(11):2538–2544

    Article  Google Scholar 

  81. Mamata H, Jolesz FA, Maier SE (2005) Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging JMRI 22(1):38–43

    Article  PubMed  Google Scholar 

  82. Manzano GR, Casella G, Wang MY, Vanni S, Levi AD (2012) A prospective, randomized trial comparing expansile cervical laminoplasty and cervical laminectomy and fusion for multilevel cervical myelopathy. Neurosurgery 70(2):264–277

    Article  PubMed  Google Scholar 

  83. Marie-Hardy L, Pascal-Moussellard H (2021) Degenerative cervical myelopathy. Rev Neurol (Paris) 177(5):490–497

    Article  CAS  PubMed  Google Scholar 

  84. Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N et al (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin 10:192–238

    Article  PubMed  Google Scholar 

  85. Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Kalsi-Ryan S, Lange SF et al (2017) A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am J Neuroradiol 38(6):1266–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martin AR, Tadokoro N, Tetreault L, Arocho-Quinones E, Budde MD, Kurpad SN et al (2018) Imaging evaluation of degenerative cervical myelopathy: current state of the art and future directions. Neurosurg Clin N Am 29(1):33–45

    Article  PubMed  Google Scholar 

  87. Martin AR, Leener BD, Cohen-Adad J, Cadotte DW, Nouri A, Wilson JR et al (2018) Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 8(4):e019809

    Article  PubMed  PubMed Central  Google Scholar 

  88. Martin AR, De Leener B, Cohen-Adad J, Kalsi-Ryan S, Cadotte DW, Wilson JR et al (2018) Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 13(4):e0195733

    Article  PubMed  PubMed Central  Google Scholar 

  89. Martin AR, Kalsi-Ryan S, Akbar MA, Rienmueller AC, Badhiwala JH, Wilson JR et al (2021) Clinical outcomes of nonoperatively managed degenerative cervical myelopathy: an ambispective longitudinal cohort study in 117 patients. J Neurosurg Spine 34(6):821–829

    Article  Google Scholar 

  90. Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V et al (2022) Imaging and electrophysiology for degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Glob Spine J 12(1_suppl):130S-146S

    Article  Google Scholar 

  91. Mastronardi L, Elsawaf A, Roperto R, Bozzao A, Caroli M, Ferrante M et al (2007) Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J NeurosurgerySpine 7(6):615–622

    Google Scholar 

  92. Meng XL, Wang H, Yang H, Hai Y, Tian BP, Lin X (2010) T allele at site 6007 of bone morphogenetic protein-4 gene increases genetic susceptibility to ossification of the posterior longitudinal ligament in male Chinese Han population. Chin Med J (Engl) 123(18):2537–42

    CAS  PubMed  Google Scholar 

  93. Milligan J, Ryan K, Fehlings M, Bauman C (2019) Degenerative cervical myelopathy: diagnosis and management in primary care. Can Fam Physician Med Fam Can 65(9):619–624

    Google Scholar 

  94. Moghaddamjou A, Badhiwala JH, Fehlings MG (2020) Degenerative cervical myelopathy: changing frontiers. World Neurosurg 135:377–378

    Article  PubMed  Google Scholar 

  95. Mohanty C, Massicotte EM, Fehlings MG, Shamji MF (2015) Association of preoperative cervical spine alignment with spinal cord magnetic resonance imaging hyperintensity and myelopathy severity: analysis of a series of 124 cases. Spine 40(1):11–16

    Article  PubMed  Google Scholar 

  96. Mowforth OD, Davies BM, Kotter MR (2019) Quality of life among informal caregivers of patients with degenerative cervical myelopathy: cross-sectional questionnaire study. Interact J Med Res 8(4):e12381

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nakamura M, Fujiyoshi K, Tsuji O, Konomi T, Hosogane N, Watanabe K et al (2012) Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J Neurosurg Spine 17(2):147–152

    Article  PubMed  Google Scholar 

  98. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG (2015) Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine 40(12):675

    Article  Google Scholar 

  99. Nouri A, Tetreault L, Zamorano JJ, Dalzell K, Davis AM, Mikulis D et al (2015) Role of magnetic resonance imaging in predicting surgical outcome in patients with cervical spondylotic myelopathy. Spine 40(3):171–178

    Article  PubMed  Google Scholar 

  100. Nouri A, Martin AR, Tetreault L, Nater A, Kato S, Nakashima H et al (2017) MRI analysis of the combined prospectively collected AOSpine North America and International data: the prevalence and spectrum of pathologies in a global cohort of patients with degenerative cervical myelopathy. Spine 42(14):1058–1067

    Article  PubMed  Google Scholar 

  101. Nouri A, Martin AR, Kato S, Reihani-Kermani H, Riehm LE, Fehlings MG (2017) The relationship between MRI signal intensity changes, clinical presentation, and surgical outcome in degenerative cervical myelopathy: analysis of a global cohort. Spine 42(24):1851–1858

    Article  PubMed  Google Scholar 

  102. Nouri A, Patel K, Montejo J, Nasser R, Gimbel DA, Sciubba DM et al (2019) The role of vitamin B(12) in the management and optimization of treatment in patients with degenerative cervical myelopathy. Glob Spine J 9(3):331–337

    Article  Google Scholar 

  103. Nouri A, Cheng JS, Davies B, Kotter M, Schaller K, Tessitore E (2020) Degenerative cervical myelopathy: a brief review of past perspectives, present developments, and future directions. J Clin Med 9(2):535

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nouri A, Matur A, Pennington Z, Elson N, Karim Ahmed A, Huq S et al (2020) Prevalence of anemia and its relationship with neurological status in patients undergoing surgery for degenerative cervical myelopathy and radiculopathy: a retrospective study of 2 spine centers. J Clin Neurosci Off J Neurosurg Soc Australas 72:252–257

    Google Scholar 

  105. Nouri A, Molliqaj G, Gondar R, Lavé A, Jannelli G, Davies B et al (2022) Can screening for degenerative cervical myelopathy (SCREEN-DCM) be effectively undertaken based on signs, symptoms and known risk factors? Rationale and research protocol for a prospective, multicentre, observational study. BMJ Open 12(7):e060689

    Article  PubMed Central  Google Scholar 

  106. Nouri A, Tessitore E, Molliqaj G, Meling T, Schaller K, Nakashima H et al (2022) Degenerative cervical myelopathy: development and natural history [AO Spine RECODE-DCM Research Priority Number 2]. Glob Spine J 12(1 Suppl):39S-54S

    Article  Google Scholar 

  107. Oh T, Lafage R, Lafage V, Protopsaltis T, Challier V, Shaffrey C et al (2017) Comparing quality of life in cervical spondylotic myelopathy with other chronic debilitating diseases using the short form survey 36-health survey. World Neurosurg 106:699–706

    Article  PubMed  Google Scholar 

  108. Pope DH, Davies BM, Mowforth OD, Bowden AR, Kotter MRN (2020) Genetics of degenerative cervical myelopathy: a systematic review and meta-analysis of candidate gene studies. J Clin Med 9(1):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ren Y, Feng J, Liu ZZ, Wan H, Li JH, Lin X (2012) A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. J Orthop Res 30(5):748–56

    Article  CAS  PubMed  Google Scholar 

  110. Restuccia D, Di Lazzaro V, Lo Monaco M, Evoli A, Valeriani M, Tonali P (1992) Somatosensory evoked potentials in the diagnosis of cervical spondylotic myelopathy. Electromyogr Clin Neurophysiol 32(7–8):389–395

    CAS  PubMed  Google Scholar 

  111. Salamon N, Ellingson BM, Nagarajan R, Gebara N, Thomas A, Holly LT (2013) Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 51(7):558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Samartzis D, Herman J, Lubicky JP, Shen FH (2006) Classification of congenitally fused cervical patterns in Klippel-Feil patients: epidemiology and role in the development of cervical spine-related symptoms. Spine 31(21):E798

    Article  PubMed  Google Scholar 

  113. Satkunendrarajah K, Nassiri F, Karadimas SK, Lip A, Yao G, Fehlings MG (2016) Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Exp Neurol 276:59–71

    Article  CAS  PubMed  Google Scholar 

  114. Serre H, Labauge R, Simon L, Lamboley C (1969) Barré-Liéou syndrome, designated “posterior sympathetic cervical syndrome.” Rhumatologie 21(7):217–246

    CAS  PubMed  Google Scholar 

  115. Setzer M, Hermann E, Seifert V, Marquardt G (2008) Apolipoprotein E gene polymorphism and the risk of cervical myelopathy in patients with chronic spinal cord compression. Spine 33(5):497–502

    Article  PubMed  Google Scholar 

  116. Setzer M, Vrionis FD, Hermann EJ, Seifert V, Marquardt G (2009) Effect of apolipoprotein E genotype on the outcome after anterior cervical decompression and fusion in patients with cervical spondylotic myelopathy: Clinical article. J Neurosurg Spine 11(6):659–666

    Article  PubMed  Google Scholar 

  117. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40-A(3):607–24

    Article  CAS  PubMed  Google Scholar 

  118. Smith SS, Stewart ME, Davies BM, Kotter MRN (2021) The prevalence of asymptomatic and symptomatic spinal cord compression on magnetic resonance imaging: a systematic review and meta-analysis. Glob Spine J 11(4):597–607

    Article  Google Scholar 

  119. Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ et al (2011) Diffusion tensor imaging in the cervical spinal cord. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 20(3):422–428

    Article  Google Scholar 

  120. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J et al (2014) The current state-of-the-art of spinal cord imaging: methods. Neuroimage 1(84):1070–1081

    Article  Google Scholar 

  121. Sumiya S, Kawabata S, Hoshino Y, Adachi Y, Sekihara K, Tomizawa S et al (2017) Magnetospinography visualizes electrophysiological activity in the cervical spinal cord. Sci Rep 7(1):2192

    Article  PubMed  PubMed Central  Google Scholar 

  122. Taha Ali TF, Badawy AE (2013) Feasibility of 1H-MR Spectroscopy in evaluation of cervical spondylotic myelopathy. Egypt J Radiol Nucl Med 44(1):93–99

    Article  Google Scholar 

  123. Takahashi M, Sakamoto Y, Miyawaki M, Bussaka H (1987) Increased MR signal intensity secondary to chronic cervical cord compression. Neuroradiology 29(6):550–556

    Article  CAS  PubMed  Google Scholar 

  124. Taniyama T, Hirai T, Yamada T, Yuasa M, Enomoto M, Yoshii T et al (2013) Modified K-line in magnetic resonance imaging predicts insufficient decompression of cervical laminoplasty. Spine 38(6):496–501

    Article  PubMed  Google Scholar 

  125. Tetreault L, Nouri A, Kopjar B, Côté P, Fehlings MG (2015) The minimum clinically important difference of the modified Japanese Orthopaedic Association Scale in patients with degenerative cervical myelopathy. Spine 40(21):1653–1659

    Article  PubMed  Google Scholar 

  126. Tetreault L, Kopjar B, Nouri A, Arnold P, Barbagallo G, Bartels R et al (2017) The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J 26(1):78–84

    Article  PubMed  Google Scholar 

  127. Tracy JA, Bartleson JD (2010) Cervical spondylotic myelopathy. Neurologist 16(3):176–187

    Article  PubMed  Google Scholar 

  128. Tracy MR, Dormans JP, Kusumi K (2004) Klippel-Feil syndrome: clinical features and current understanding of etiology. Clin Orthop Relat Res 424:183–190

    Article  Google Scholar 

  129. Uchida K, Nakajima H, Sato R, Kokubo Y, Yayama T, Kobayashi S et al (2005) Multivariate analysis of the neurological outcome of surgery for cervical compressive myelopathy. J Orthop Sci Off J Jpn Orthop Assoc 10(6):564–573

    Google Scholar 

  130. Ulrich A, Haefeli J, Blum J, Min K, Curt A (2013) Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology 80(15):1393–1399

    Article  PubMed  Google Scholar 

  131. Ushio S, Hoshino Y, Kawabata S, Adachi Y, Sekihara K, Sumiya S et al (2019) Visualization of the electrical activity of the cauda equina using a magnetospinography system in healthy subjects. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 130(1):1–11

    Article  Google Scholar 

  132. Wang D, Liu W, Cao Y, Yang L, Liu B, Yao G et al (2013) BMP-4 polymorphisms in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell Physiol Biochem 32(1):210–217

    Article  CAS  PubMed  Google Scholar 

  133. Wen CY, Cui JL, Mak KC, Luk KDK, Hu Y (2014) Diffusion tensor imaging of somatosensory tract in cervical spondylotic myelopathy and its link with electrophysiological evaluation. Spine J Off J North Am Spine Soc 14(8):1493–1500

    Article  Google Scholar 

  134. Wen CY, Cui JL, Liu HS, Mak KC, Cheung WY, Luk KDK et al (2014) Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology 270(1):197–204

    Article  PubMed  Google Scholar 

  135. Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J et al (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 1(84):1082–1093

    Article  Google Scholar 

  136. Wilson JRF, Badhiwala JH, Moghaddamjou A, Martin AR, Fehlings MG (2019) Degenerative cervical myelopathy; a review of the latest advances and future directions in management. Neurospine 16(3):494–505

    Article  PubMed  PubMed Central  Google Scholar 

  137. Xiangshui M, Xiangjun C, Xiaoming Z, Qingshi Z, Yi C, Chuanqiang Q et al (2010) 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. Clin Radiol 65(6):465–473

    Article  CAS  PubMed  Google Scholar 

  138. Xu C, Zhang H, Zhou W, Wu H, Shen X, Chen Y et al (2019) MicroRNA-10a, -210, and -563 as circulating biomarkers for ossification of the posterior longitudinal ligament. Spine J Off J North Am Spine Soc 19(4):735–743

    Article  Google Scholar 

  139. Yang X, Gharooni AA, Dhillon RS, Goacher E, Dyson EW, Mowforth O et al (2021) The relative merits of posterior surgical treatments for multi-level degenerative cervical myelopathy remain uncertain: findings from a systematic review. J Clin Med 10(16):3653

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yiannikas C, Shahani BT, Young RR (1986) Short-latency somatosensory-evoked potentials from radial, median, ulnar, and peroneal nerve stimulation in the assessment of cervical spondylosis. Comparison with conventional electromyography. Arch Neurol 43(12):1264–1271

    Article  CAS  PubMed  Google Scholar 

  141. Yoon ST, Hashimoto RE, Raich A, Shaffrey CI, Rhee JM, Riew KD (2013) Outcomes after laminoplasty compared with laminectomy and fusion in patients with cervical myelopathy: a systematic review. Spine 38(22S):S183

    Article  PubMed  Google Scholar 

  142. Yuan H, Ye F, Zhou Q, Feng X, Zheng L, You T et al (2022) Relationship between atypical symptoms of degenerative cervical myelopathy and segments of spinal cord compression: retrospective observational study. World Neurosurg 161:e154–e161

    Article  PubMed  Google Scholar 

  143. Zhou F, Gong H, Liu X, Wu L, Luk KDK, Hu Y (2014) Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy. PLoS One 9(8):e104442

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

NH is supported by the Research Fund of the University of Basel for Excellent Junior Researchers. MGF is supported by the Robert Campeau Family Foundation/Dr. C.H. Tator Chair in Brain and Spinal Cord Research at UHN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Spine degenerative

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejrati, N., Pedro, K., Alvi, M.A. et al. Degenerative cervical myelopathy: Where have we been? Where are we now? Where are we going?. Acta Neurochir 165, 1105–1119 (2023). https://doi.org/10.1007/s00701-023-05558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05558-x

Keywords

Navigation