Skip to main content
Log in

Blow-up for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper is devoted to an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions. We present a precise blow-up scenario and a new blow-up result for strong solutions to the system. However, due to higher-order nonlinearity, the estimate of several required nonlinear terms is very hard. A complicated problem is that we deal with the equation with higher-order nonlinearity, making the proof of several required nonlinear estimates some what delicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  3. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Liu, Y., Qu, C., Qu, C.: Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 23–535 (2006)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A.: On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 178, 559–568 (2011)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A., Gerdjikov, V., Ivanov, I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Prob. 22, 2197–2207 (2006)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Kappeler, T., Kolev, B., Topalov, T.: On Geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom. 31, 155–180 (2007)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  16. Fokas, S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    Article  MathSciNet  Google Scholar 

  17. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  18. Fu, Y., Gui, G., Liu, Y., Qu, Z.: On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity. J. Differ. Equ. 255, 1905–1938 (2013)

    Article  MathSciNet  Google Scholar 

  19. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D 95, 229–243 (1996)

    Article  MathSciNet  Google Scholar 

  20. Gui, G., Liu, Y., Olver, J., Qu, Z.: Wave-breaking and peakons for a modified Camassa Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  MathSciNet  Google Scholar 

  21. Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation. Nonlinear Anal. 95, 499–529 (2014)

    Article  MathSciNet  Google Scholar 

  22. Holden, H., Raynaud, X.: Dissipative solutions for the Camassa-Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    Article  MathSciNet  Google Scholar 

  23. Holden, H., Raynaud, X.: Global conservative solutions of the Camassa-Holm equations-a Lagrangianpoiny of view. Commun. Partial Differ. Equ. 32, 1511–1549 (2007)

    Article  Google Scholar 

  24. Liu, Y., Olver, J., Qu, C.: On the blow-up of solutions to the integrable modified Camassa-Holm equation. Anal. Appl. 12, 355–368 (2014)

    Article  MathSciNet  Google Scholar 

  25. Mi, S., Mu, L.: Cauchy problem for an integrable three-component model with peakon solutions. Front. Math. China 3, 537–565 (2014)

    Article  MathSciNet  Google Scholar 

  26. Misiolek, A.: Shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  Google Scholar 

  27. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900 (1996)

  28. Qu, Z., Song, F., Yao, X.: Multi-component integrable systems and invariant curve flows in certain geometries, SIGMA Symmetry Integr. Geom. Methods Appl 9, 001 (2013)

  29. Xia, B., Zhou, R., Qiao, Z.: A three-component Camassa-Holm system with cubic nonlinearity and peakons. J. Nonlinear. Math. Phys 22, 155–169 (2015)

    Article  MathSciNet  Google Scholar 

  30. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

  31. Yan, K., Qiao, Z., Yin, Z.: Qualitative analysis for a new integrable two-component Camassa-Holm system with peakon and weak kink solutions. Commun. Math. Phys. 336, 581–617 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yan, K., Qiao, Z., Zhang, Y.: Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions. J. Differ. Equ. 259, 6644–6671 (2015)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Xu, Z.: Blow-up phenomena and persistence properties for an integrable two-component peakon system. J. Differ. Equ. 263, 5787–5812 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Mi is partially supported by NSF of Chongqing (cstc2020jcyj-jqX0025). The work of Huang is partially supported by NSF of China (11971067, 11631008, 11771183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Mi.

Additional information

Communicated by Joachim Escher.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Huang, D. Blow-up for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions. Monatsh Math 198, 153–164 (2022). https://doi.org/10.1007/s00605-021-01635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01635-4

Keywords

Mathematics Subject Classification

Navigation