Skip to main content
Log in

Qualitative Analysis for a New Integrable Two-Component Camassa–Holm System with Peakon and Weak Kink Solutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to a new integrable two-component Camassa–Holm system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable system that admits weak kink and kink–peakon interactional solutions. In addition, the new system includes both standard (quadratic) and cubic Camassa–Holm equations as two special cases. In the paper, we first establish the local well-posedness for the Cauchy problem of the system, and then derive a precise blow-up scenario and a new blow-up result for strong solutions to the system with both quadratic and cubic nonlinearity. Furthermore, its peakon and weak kink solutions are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der MathematischenWissenschaften, vol. 343. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Camassa R., Holm D., Hyman J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  5. Chen M., Liu S-Q., Zhang Y.: A 2-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Coclite G.M., Karlsen K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 233, 60–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Constantin A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa 26, 303–328 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Constantin A., Escher J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. (2) 173, 559–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin A., Ivanov R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Constantin A., Ivanov R., Lenells J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Commun. Math. Helv. 78, 787–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Constantin A., Molinet L.: Global weak solutions for a shallow water equation. Commun. Math. Phys. 211, 45–61 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Constantin, A. Strauss W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dai H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Danchin R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Degasperis A., Holm D.D., Hone A.N.W.: A new integral equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  21. Degasperis A., Procesi M.: Asymptotic Integrability. Symmetry and Perturbation Theory (Rome, 1998), pp. 23–37. World Scientific Publishing, River Edge (1999)

    Google Scholar 

  22. Dullin H.R., Gottwald G.A., Holm D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 (2001)

    Article  ADS  Google Scholar 

  23. Escher J., Kolev B.: The Degasperis–Procesi equation as a non-metric Euler equation. Math. Z. 269, 1137–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Escher J., Lechtenfeld O., Yin Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Escher J., Liu Y., Yin Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Escher J., Liu Y., Yin Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Escher J., Yin Z.: Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 256, 479–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fokas A.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fokas A., Fuchssteiner B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D 4, 47–66 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fuchssteiner B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guan C., Yin Z.: Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system. J. Differ. Equ. 248, 2003–2014 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Guan C., Karlsen K.H., Yin Z.: Well-posedness and blow-up phenomena for a modified two-component Camassa–Holm equation. Contemp. Math. 526, 199–220 (2010)

    Article  MathSciNet  Google Scholar 

  33. Guan C., Yin Z.: Global weak solutions for a two-component Camassa–Holm shallow water system. J. Funct. Anal. 260, 1132–1154 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Guan C., Yin Z.: Global weak solutions for a modified two-component Camassa–Holm equation. Ann. Inst. Henri Poincare (C) Non Linear Anal. 28, 623–641 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Gui G., Liu Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gui G., Liu Y., Olver P., Qu C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Himonas A.A., Holliman C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Holm D., Naraigh L., Tronci C.: Singular solution of a modified two-component Camassa–Holm equation. Phys. Rev. E (3) 79, 1–13 (2009)

    Article  Google Scholar 

  39. Hone A.N., Wang J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002 (2008)

    Article  MathSciNet  Google Scholar 

  40. Hou Y., Zhao E., Fan P., Qiao Z.: Algebro-geometric solutions for the Degasperis–Procesi hierarchy. SIAM J. Math. Anal. 45, 1216–1266 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Johnson R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 457, 63–82 (2002)

    ADS  Google Scholar 

  42. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Mathematics, Vol. 448, pp. 25–70. Springer Verlag, Berlin (1975)

  43. Liu Y., Yin Z.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Lundmark H.: Formation and dynamics of shock waves in the Degasperis–Procesi equation. J. Nonlinear Sci. 17, 169–198 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Novikov V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    Article  MathSciNet  Google Scholar 

  46. Olver P.J., Rosenau P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  47. Popowicz Z.: A two-component generalization of the Degasperis–Procesi equation. J. Phys. A Math. Gen. 39, 13717–13726 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Qiao Z.: The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Commun. Math. Phys. 239, 309–341 (2003)

    Article  ADS  MATH  Google Scholar 

  49. Qiao Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  50. Qiao Z., Xia B.: Integrable peakon systems with weak kink and kink–peakon interactional solutions. Front. Math. China 8, 1185–1196 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Qiao Z.: Integrable hierarchy (the DP hierarchy), 3 by 3 constrained systems, and parametric and stationary solutions. Acta Appl. Math. 83, 199–220 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tan W., Yin Z.: Global periodic conservative solutions of a periodic modified two-component Camassa–Holm equation. J. Funct. Anal. 261, 1204–1226 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MATH  MathSciNet  Google Scholar 

  54. Whitham G.B.: Linear and Nonlinear Waves. Wiley, New York (1980)

    Google Scholar 

  55. Wu X., Yin Z.: Global weak solutions for the Novikov equation. J. Phys. A 44, 055202 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  56. Xia, B., Qiao, Z.: A new two-component integrable system with peakon and weak kink solutions. arXiv:1211.5727v3

  57. Xin Z., Zhang P.: On the weak solutions to a shallow water equation. Commun. Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  58. Yan K., Yin Z.: Analytic solutions of the Cauchy problem for two-component shallow water systems. Math. Z. 269, 1113–1127 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yan K., Yin Z.: On the Cauchy problem for a two-component Degasperis–Procesi system. J. Differ. Equ. 252, 2131–2159 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Yan K., Yin Z.: Well-posedness for a modified two-component Camassa–Holm system in critical spaces. Discrete Contin. Dyn. Syst. 33, 1699–1712 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  61. Yan K., Yin Z.: Initial boundary value problems for the two-component shallow water systems. Rev. Mat. Iberoam. 29, 911–938 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  62. Yin Z.: On the Cauchy problem for an integrable equation with peakon solutions. Illinois J. Math. 47, 649–666 (2003)

    MATH  MathSciNet  Google Scholar 

  63. Yin Z.: Global weak solutions to a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Qiao.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Qiao, Z. & Yin, Z. Qualitative Analysis for a New Integrable Two-Component Camassa–Holm System with Peakon and Weak Kink Solutions. Commun. Math. Phys. 336, 581–617 (2015). https://doi.org/10.1007/s00220-014-2236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2236-1

Keywords

Navigation