Skip to main content
Log in

T790M mutation upconversion fluorescence biosensor via mild ATRP strategy and site-specific DNA cleavage of restriction endonuclease

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A unique combination of a specific nucleic acid restriction endonuclease (REase) and atom transfer radical polymerization (ATRP) signal amplification strategy was employed for the detection of T790M mutations prevalent in the adjuvant diagnosis of lung cancer. REase selectively recognizes and cleaves T790M mutation sites on double-stranded DNA formed by hybridization of a capture sequence and a target sequence. At the same time, the ATRP strategy resulted in the massive aggregation of upconverted nanoparticles (UCNPs), which significantly improved the sensitivity of the biosensor. In addition, the UCNPs have excellent optical properties and can eliminate the interference of autofluorescence in the samples, thus further improving the detection sensitivity. The proposed upconversion fluorescent biosensor is characterized by high specificity, high sensitivity, mild reaction conditions, fast response time, and a detection limit as low as 0.14 fM. The performance of the proposed biosensor is comparable to that of clinical PCR methods when applied to clinical samples. This work presents a new perspective for assisted diagnosis in the pre-intervention stage of tumor diagnostics in the early stage of precision oncology treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Nair M, Sandhu SS, Sharma AK (2018) Cancer molecular markers: A guide to cancer detection and management. Semin Cancer Biol 52:39–55. https://doi.org/10.1016/j.semcancer.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  2. Yang F, Gong J, Li M, Jiang X, Zhang J, Liao M, Zhang H, Tremblay P, Zhang T (2023) Electrochemiluminescent CdS Quantum Dots Biosensor for Cancer Mutation Detection at Different Positions on Linear DNA Analytes. Anal Chem 95:14016–14024. https://doi.org/10.1021/acs.analchem.3c02649

    Article  CAS  PubMed  Google Scholar 

  3. Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, Pio R, Zulueta JJ, Spira A, Massion PP, Mazzone PJ, Montuenga LM (2019) Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J Thorac Oncol 14:343–357. https://doi.org/10.1016/j.jtho.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  4. Ouedraogo S, Zhou X, Chen H, Chen F, Ma C (2023) Recent advances in biosensors and sequencing technologies for the detection of mutations. Microchem J 185:108306. https://doi.org/10.1016/j.microc.2022.108306

    Article  CAS  Google Scholar 

  5. Guo L, Mu Z, Qing M, Zhou J, Li H, Wang L, Zhong M, Bai L (2022) A Novel Signal-On Electrochemiluminescence Immunosensor for the Detection of NSCLC Antigen Biomarker Based on New Co-Reaction Accelerators. Adv Healthc Mater 12:2202287. https://doi.org/10.1002/adhm.202202287

    Article  CAS  Google Scholar 

  6. Li Z, Liu R, Lv Y (2021) ICPMS based multiplexed bioassay: Principles, approaches and progresses. Appl Spectrosc Rev 58:1–26. https://doi.org/10.1080/05704928.2021.1918703

    Article  CAS  Google Scholar 

  7. Lai RS, Hsu HK, Lu JY, Ger LP, Lai NS (1996) CYFRA 21–1 Enzyme-Linked Immunosorbent Assay: Evaluation as a Tumor Marker in Non-small Cell Lung Cancer. Chest 109:995–1000. https://doi.org/10.1378/chest.109.4.995

    Article  CAS  PubMed  Google Scholar 

  8. Ansari S, Masoum S (2021) Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta 223:121411. https://doi.org/10.1016/j.talanta.2020.121411

    Article  CAS  PubMed  Google Scholar 

  9. Singh H, Thakur B, Bhardwaj S, Khatri M, Kim K, Bhardwaj N (2023) Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem 426:136657. https://doi.org/10.1016/j.foodchem.2023.136657

    Article  CAS  PubMed  Google Scholar 

  10. Han D, Yang K, Sun S, Wen J (2023) Signal amplification strategies in electrochemiluminescence biosensors. Chem Eng J 476:146688. https://doi.org/10.1016/j.cej.2023.146688

    Article  CAS  Google Scholar 

  11. Dong J, Yang H, Zhao J, Wen L, He C, Hu Z, Huo D, Hou C, Li J (2022) Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Microchim Acta 189:49. https://doi.org/10.1007/s00604-021-05141-0

    Article  CAS  Google Scholar 

  12. Zhang K, Fan Z, Huang Y, Ding Y, Xie M, Wang M (2022) Hybridization chain reaction circuit-based electrochemiluminescent biosensor for SARS-cov-2 RdRp gene assay. Talanta 240:123207. https://doi.org/10.1016/j.talanta.2022.123207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou S, Guo L, Shi X, Ma L, Yang H, Miao M (2023) In situ synthesized eRAFT polymers for highly sensitive electrochemical determination of AFB1 in foods and herbs. Food Chem 421:136176. https://doi.org/10.1016/j.foodchem.2023.136176

    Article  CAS  PubMed  Google Scholar 

  14. Parkatzidis K, Wang H, Truong N, Anastasaki A (2020) Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem 6:1575–1588. https://doi.org/10.1016/j.chempr.2020.06.014

    Article  CAS  Google Scholar 

  15. Wang W, Ge Q, Zhao X (2023) Enzyme-free isothermal amplification strategy for the detection of tumor-associated biomarkers: A review. Trac-Trends Anal Chem 160:116960. https://doi.org/10.1016/j.trac.2023.116960

    Article  CAS  Google Scholar 

  16. Yang H, Bao J, Huo D, Zeng Y, Wang X, Samalo M, Zhao J, Zhang S, Shen C, Hou C (2021) Au doped poly-thionine and poly-m-Cresol purple: Synthesis and their application in simultaneously electrochemical detection of two lung cancer markers CEA and CYFRA21-1. Talanta 224:121816. https://doi.org/10.1016/j.talanta.2020.121816

    Article  CAS  PubMed  Google Scholar 

  17. Tiwari S, Gupta PK, Bagbi Y, Sarkar T, Solanki PR (2017) L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens Bioelectron 89:1042–1052. https://doi.org/10.1016/j.bios.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  18. Tamima U, Sarkar S, Islam MR, Shil A, Kim KH, Reo YJ, Jun YW, Banna H, Lee S, Ahn KH (2023) A Small-Molecule Fluorescence Probe for Nuclear ATP. Angew Chem Int Edit 62:e202300580. https://doi.org/10.1002/anie.202300580

    Article  CAS  Google Scholar 

  19. Chen G, Qiu H, Prasad CX (2014) Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem Rev 114:5161–5214. https://doi.org/10.1021/cr200359p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang N, Yang Y, Zhang M, Zhu Q, Li Z (2022) Lysosomal Adenosine Triphosphate-Activated Upconversion Nanoparticle/Carbon Dot Composite for Ratiometric Imaging of Hepatotoxicity. Anal Chem 94(45):15738–15745. https://doi.org/10.1021/acs.analchem.2c03351

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Wei S, Wang J, Li J, Tang J, Aaron AA, Cai Q, Wang N, Li Z (2023) Highly sensitive and ratiometric detection of nitrite in food based on upconversion-carbon dots nanosensor. Anal Chim Acta 1263:341245. https://doi.org/10.1016/j.aca.2023.341245

    Article  CAS  PubMed  Google Scholar 

  22. Zhang M, Wang N, Li Z (2022) Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. TrAC, Trends Anal Chem 151:116602. https://doi.org/10.1016/j.trac.2022.116602

    Article  CAS  Google Scholar 

  23. Hou M, Ma L, Yang H, Si F, Liu Y (2023) Background-free and signal-mplified upconversion fluorescent biosensing platform for sensitive detection of CYFRA21-1. Talanta 262:124659. https://doi.org/10.1016/j.talanta.2023.124659

    Article  CAS  PubMed  Google Scholar 

  24. Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH (2022) Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 17:1028–1072. https://doi.org/10.1038/s41596-021-00670-7

    Article  CAS  PubMed  Google Scholar 

  25. Rong Y, Hassan MM, Ouyang Q, Chen Q (2021) Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 20:3531–3578. https://doi.org/10.1111/1541-4337.12765

    Article  CAS  PubMed  Google Scholar 

  26. Hu S, Xu H, Zhou B, Xu S, Shen B, Dong B, Yin Z, Xu S, Sun L, Lv J, Wang J, Xu W, Bai X, Xu L, Mintova S, Song H (2021) Double Stopband Bilayer Photonic Crystal Based Upconversion Fluorescence PSA Sensor. Sens Actuator B-Chem 326:128816. https://doi.org/10.1016/j.snb.2020.128816

    Article  CAS  Google Scholar 

  27. Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD (2020) Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog Polym Sci 100:101186. https://doi.org/10.1016/j.progpolymsci.2019.101186

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z, Sun DW, Pu H, Wei Q (2023) A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta 252:123773. https://doi.org/10.1016/j.talanta.2022.123773

    Article  CAS  PubMed  Google Scholar 

  29. Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Liu H, Zhao P, Chen L, Liu Y, Li Y, Dong Y (2019) Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron 127:174–180. https://doi.org/10.1016/j.bios.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  30. Wang JS, Matyjaszewski K (1995) Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615. https://doi.org/10.1021/ja00125a035

    Article  CAS  Google Scholar 

  31. Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J (2016) Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 116:1803–1949. https://doi.org/10.1021/acs.chemrev.5b00396

    Article  CAS  PubMed  Google Scholar 

  32. Truong NP, Jones GR, Bradford KGE, Konkolewicz D, Anastasaki A (2021) A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 5:859–869. https://doi.org/10.1038/s41570-021-00328-8

    Article  CAS  PubMed  Google Scholar 

  33. Hou M, Ma L, Yang H, Si F, Liu Y (2023) Background-free and signal-amplified upconversion fluorescent biosensing platform for sensitive detection of CYFRA21-1. Talanta 262:124659. https://doi.org/10.1016/j.talanta.2023.124659

    Article  CAS  PubMed  Google Scholar 

  34. Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235. https://doi.org/10.1039/C4CS00053F

    Article  CAS  PubMed  Google Scholar 

  35. Jia M, Chen S, Shi T, Li C, Wang Y, Zhang H (2021) Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol A. Food Chem 344:128602. https://doi.org/10.1016/j.foodchem.2020.128602

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Zhang X, Wu J, Lin N, Sun W, Chen M, Ou Q, Lin Z (2019) Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta 191:277–282. https://doi.org/10.1016/j.talanta.2018.08.064

    Article  CAS  PubMed  Google Scholar 

  37. Kwon W, Cha B, Kim S, Hwang S, Kim J, Kalimuthu K, Park H, Park K (2019) Fluorescence polarization-based detection of cancer-related mutations using target-initiated rolling circle amplification. Analyst 144:4149–4152. https://doi.org/10.1039/C9AN00429G

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Uygun Z, Yeniay L, Sağın F (2020) CRISPR-dCas9 powered impedimetric biosensor for label-free detection of circulating tumor DNAs. Anal Chim Acta 1121:35–41. https://doi.org/10.1016/j.aca.2020.04.009

    Article  CAS  PubMed  Google Scholar 

  39. Cui Y, Niu C, Na N, Ouyang J (2017) Core-shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence. J Mater Chem B 5:5329–5335. https://doi.org/10.1039/C7TB01084B

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of tackling of key scientific and technical problems in Henan Province (232102321119, 202102310149).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yanju Liu and Huaixia Yang; methodology, Yanju Liu and Liang Guo; validation, Liang Guo, and Mengyuan Hou; formal analysis, Hiayang Gao.; investigation, Yanju Liu, Huaixia Yang and Fuchun Si; resources, Huaixia Yang and Fuchun Si; writing-original draft preparation, Yanju Liu and Mengyuan Hou; writing-review and editing, Liang Guo and Yuanmeng Ke; supervision, Huaixia Yang; funding acquisition, Huaixia Yang and Yanju Liu. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Huaixia Yang or Fuchun Si.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guo, L., Hou, M. et al. T790M mutation upconversion fluorescence biosensor via mild ATRP strategy and site-specific DNA cleavage of restriction endonuclease. Microchim Acta 191, 148 (2024). https://doi.org/10.1007/s00604-024-06229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06229-z

Keywords

Navigation