Skip to main content

Advertisement

Log in

PD-L1-driven efficient enrichment and elimination of circulating cancer cells by magnetic MoSe2 nanosheet

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) are important biomarkers in the development and progression of lung cancer because they can reach other organs through the blood circulation and form distant metastases, exacerbating lung cancer progression. The presence of CTCs is also the main reason for the failure of nanomedicine-based lung cancer treatments. Therefore, magnetic MoSe2 nanosheets loaded with programmed death-ligand 1 (PD-L1), named PD-L1-MFP NS, were employed here to precisely capture lung cancer CTCs in the blood circulation through the tumor-targeting effect of PD-L1 killing CTCs with highly effective photothermal therapy (PTT). In addition, by increasing the expression of cytomegalovirus UL16-binding protein (ULBP) ligands on tumor cells, the PD-L1-MFP NS further activated natural killer (NK) cells and triggered NK cell-induced cancer immunotherapy, thereby enhancing the overall tumor-killing effect. In summary, this material designed to capture CTCs provides a substantial advancement for personalized PTT-triggered immunotherapy and has great clinical translational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, D. F.; Shen, L. S.; Luo, M.; Zhang, K.; Li, J. F.; Yang, Q.; Zhu, F. F.; Zhou, D.; Zheng, S.; Chen, Y. D. et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tayoun, T.; Faugeroux, V.; Oulhen, M.; Aberlenc, A.; Pawlikowska, P.; Farace, F. CTC-derived models: A window into the seeding capacity of circulating tumor cells (CTCs). Cells 2019, 8, 1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nicolazzo, C.; Raimondi, C.; Mancini, M.; Caponnetto, S.; Gradilone, A.; Gandini, O.; Mastromartino, M.; del Bene, G.; Prete, A.; Longo, F. et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci. Rep. 2016, 6, 31726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoo, C. E.; Park, J. M.; Moon, H. S.; Joung, J. G.; Son, D. S.; Jeon, H. J.; Kim, Y. J.; Han, K. Y.; Sun, J. M.; Park, K. et al. Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Sci. Rep. 2016, 6, 37392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8, 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinkala, E.; Sollier-Christen, E.; Renier, C.; Rosàs-Canyelles, E.; Che, J.; Heirich, K.; Duncombe, T. A.; Vlassakis, J.; Yamauchi, K. A.; Huang, H. Y. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun. 2017, 8, 14622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai, Y.; Karmakar, B.; Babalghith, A. O.; Batiha, G. E. S.; AlSalem, H. S.; El-Kott, A. F.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int. J. Biol. Macromol. 2022, 223, 1067–1082.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y.; Zhang, F.; Lin, H. M.; Qu, F. Y. Biodegradable hollow MoSe2/Fe3O4 nanospheres as the photodynamic therapy-enhanced agent for multimode CT/MR/IR imaging and synergistic antitumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 43964–43975.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, L.; Gao, P.; Zhou, W. H.; Mei, C. M.; Huang, Y. Y.; Yu, X. F.; Chu, P. K.; Chen, T. F. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge-switching ability for precise tumor radiosensitization. ACS Nano 2018, 12, 12401–12415.

    Article  CAS  PubMed  Google Scholar 

  10. Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Myung, J. H.; Park, S. J.; Wang, A. Z.; Hong, S. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Adv. Drug Deliv. Rev. 2018, 125, 36–47.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, L. M.; Cheng, C.; Kang, M. L.; Luo, J.; Gong, L. L.; Pang, Q. S.; Wang, J.; Yuan, Z. Y.; Zhao, L. J.; Wang, P. Thoracic radiotherapy (TRT) improved survival in both oligo- and polymetastatic extensive stage small cell lung cancer. Sci. Rep. 2017, 7, 9255.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J. O.; Jeong, J. H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol. Pharm. 2019, 16, 1184–1199.

    Article  CAS  PubMed  Google Scholar 

  14. Suresh, K.; Naidoo, J.; Lin, C. T.; Danoff, S. Immune checkpoint immunotherapy for non-small cell lung cancer: Benefits and pulmonary toxicities. Chest 2018, 154, 1416–1423.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yi, X. Q.; Dai, J.; Han, Y. Y.; Xu, M.; Zhang, X. J.; Zhen, S. J.; Zhao, Z. J.; Lou, X. D.; Xia, F. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun. Biol. 2018, 1, 202.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vermesh, O.; Aalipour, A.; Ge, T. J.; Saenz, Y.; Guo, Y.; Alam, I. S.; Park, S. M.; Adelson, C. N.; Mitsutake, Y.; Vilches-Moure, J. et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat. Biomed. Eng 2018, 2, 696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Postow, M. A.; Sidlow, R.; Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, B.; Xu, X. X.; Li, B.; Wei, Z.; Lu, S.; Li, J. J.; Liu, K.; Zhang, H. J.; Wang, F.; Yang, Y. Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy. Nano Res. 2023, 16, 11216–11220.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Crowe, W. N.; Wang, L. L.; Lu, Y.; Petty, W. J.; Habib, A. A.; Zhao, D. W. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 2019, 10, 5108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Indini, A.; Rijavec, E.; Grossi, F. Circulating biomarkers of response and toxicity of immunotherapy in advanced non-small cell lung cancer (NSCLC): A comprehensive review. Cancers 2021, 13, 1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge, M.; Guo, H. Y.; Zong, M.; Chen, Z. X.; Liu, Z.; Lin, H.; Shi, J. L. Bandgap-engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy. Angew. Chem., Int. Ed. 2023, 62, e202215795.

    Article  CAS  Google Scholar 

  22. Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao, Y.; Zhang, Z. Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, C. Y.; Liu, Z. L.; Chen, Z. X.; Xu, D. L.; Chen, L. S.; Lin, H.; Shi, J. L. A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci. Adv. 2021, 7, eabj8833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y.; Crowe, W. N.; Wang, L. L.; Petty, W. J.; Habib, A. A.; Zhao, D. W. Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer. Nano Res. 2023, 16, 5300–5310.

    Article  CAS  PubMed  Google Scholar 

  26. Sung, C.; An, J.; Lee, S.; Park, J.; Lee, K. S.; Kim, I. H.; Han, J. Y.; Park, Y. H.; Kim, J. H.; Kang, E. J. et al. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. Nat. Cancer 2023, 4, 844–859.

    Article  CAS  PubMed  Google Scholar 

  27. Pereira-Veiga, T.; Schneegans, S.; Pantel, K.; Wikman, H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep. 2022, 40, 111298.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, W. X.; Zhang, Z. Y.; Ye, M. M.; Pan, S. Y.; Huang, G. N.; Chen, T. F.; Zhu, X. Q. Morphology-directed radiosensitization of MoSe2 nanoplatforms for promoting cervical cancer radiotherapy. Nano Today 2022, 46, 101598.

    Article  CAS  Google Scholar 

  29. He, L. Z.; Nie, T. Q.; Xia, X. J.; Liu, T.; Huang, Y. Y.; Wang, X. J.; Chen, T. F. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv. Funct. Mater. 2019, 29, 1901240.

    Article  Google Scholar 

  30. Belaroussi, Y.; Bouteiller, F.; Bellera, C.; Pasquier, D.; Perol, M.; Debieuvre, D.; Filleron, T.; Girard, N.; Schott, R.; Mathoulin-Pélissier, S. et al. Survival outcomes of patients with metastatic non-small cell lung cancer receiving chemotherapy or immunotherapy as first-line in a real-life setting. Sci. Rep. 2023, 13, 9584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan, L. Y.; Wang, W. Z.; Wang, Z. H.; Zhao, M. Z. Gold nanoparticles enhance antibody effect through direct cancer cell cytotoxicity by differential regulation of phagocytosis. Nat. Commun. 2021, 12, 6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh, R. P.; Sharma, G.; Sonali; Singh, S.; Bharti, S.; Pandey, B. L.; Koch, B.; Muthu, M. S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng.: C 2017, 77, 446–458.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Zheng, D. L.; Tan, Q. L.; Wang, M. X.; Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6, 668–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J. D.; Zhang, Y. T.; Dong, M.; Liu, Z. P.; Guo, B. B.; Zhang, H. P.; Gao, L. M. Capture and release of circulating tumor cells stimulated by pH and NIR irradiation of magnetic Fe3O4@ZIF-8 nanoparticles. Colloid Surf. B: Biointerf. 2023, 224, 113206.

    Article  CAS  Google Scholar 

  35. Labib, M.; Wang, Z. J.; Ahmed, S. U.; Mohamadi, R. M.; Duong, B.; Green, B.; Sargent, E. H.; Kelley, S. O. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat. Biomed. Eng. 2021, 5, 41–52.

    Article  CAS  PubMed  Google Scholar 

  36. Poudineh, M.; Aldridge, P. M.; Ahmed, S.; Green, B. J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R. M.; Nam, R. K.; Hansen, A. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017, 12, 274–281.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, P.; Huang, Y. Y.; Hoshino, K.; Zhang, J. X. J. Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep. 2015, 5, 8745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhar, M.; Wong, J.; Che, J.; Matsumoto, M.; Grogan, T.; Elashoff, D.; Garon, E. B.; Goldman, J. W.; Christen, E. S.; Di Carlo, D. et al. Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer. Sci. Rep. 2018, 8, 2592.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, X.; Yong, T. Y.; Wei, Z. H.; Bie, N. N.; Zhang, X. Q.; Zhan, G. T.; Li, J. Y.; Qin, J. Q.; Yu, J. J.; Zhang, B. X. et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat. Commun. 2022, 13, 2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, J. L.; Wang, F. A.; Liu, F.; Sun, W. T.; Jiang, Q. Y.; Liu, Y. H.; Zhao, Y.; Liu, X. Q. Effective nanotherapeutic approach for metastatic breast cancer treatment by supplemental oxygenation and imaging-guided phototherapy. Nano Res. 2020, 13, 1111–1121.

    Article  CAS  Google Scholar 

  41. Harrington, W. N.; Novoselova, M. V.; Bratashov, D. N.; Khlebtsov, B. N.; Gorin, D. A.; Galanzha, E. I.; Zharov, V. P. Photoswitchable spasers with a plasmonic core and photoswitchable fluorescent proteins. Sci. Rep. 2019, 9, 12439.

    Article  PubMed  PubMed Central  Google Scholar 

  42. He, Y.; Wang, L. D.; Shi, J. H.; Yao, J. J.; Li, L.; Zhang, R. Y.; Huang, C. H.; Zou, J.; Wang, L. V. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells. Sci. Rep. 2016, 6, 39616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou, B. H.; Xiong, Z. S.; He, L. Z.; Chen, T. F. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022, 285, 121549.

    Article  CAS  PubMed  Google Scholar 

  45. Lei, Z. Y.; Zhu, W. C.; Xu, S. J.; Ding, J.; Wan, J. X.; Wu, P. Y. Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl. Mater. Interfaces 2016, 8, 20900–20908.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, L. W.; Chan, L.; Wang, J. P.; Chen, M. K.; Cai, F.; Tian, Y.; Ma, L.; Chen, T. F. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Res. 2023, 16, 5169–5175.

    Article  CAS  Google Scholar 

  47. Tang, G. G.; Chen, W. T.; Wan, X.; Zhang, F. X.; Xu, J. Construction of magnetic Fe3O4 nanoparticles coupled with flower-like MoSe2 nanosheets for efficient adsorptive removal of methylene blue. Colloid Surf. A: Physicochem. Eng. Asp. 2020, 587, 124291.

    Article  CAS  Google Scholar 

  48. Ge, M.; Zong, M.; Xu, D.; Chen, Z.; Yang, J.; Yao, H.; Wei, C.; Chen, Y.; Lin, H.; Shi, J. Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Mater. Today Nano 2021, 15, 100119.

    Article  CAS  Google Scholar 

  49. Ge, M.; Xu, D. L.; Chen, Z. X.; Wei, C. Y.; Zhang, Y. X.; Yang, C.; Chen, Y.; Lin, H.; Shi, J. L. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Lett. 2021, 21, 6764–6772.

    Article  CAS  PubMed  Google Scholar 

  50. Xu, D. L.; Lin, H.; Qiu, W. J.; Ge, M.; Chen, Z. X.; Wu, C. Y.; You, Y. L.; Lu, X. Y.; Wei, C. Y.; Liu, J. J. et al. Hydrogen-bonded silicene nanosheets of engineered bandgap and selective degradability for photodynamic therapy. Biomaterials 2021, 278, 121172.

    Article  CAS  PubMed  Google Scholar 

  51. Du, Y. X.; Zhang, Z. H.; Yang, Y.; Liu, T.; Chen, T. F.; Li, X. L. Highly active selenium nanotherapeutics combined with metformin to achieve synergistic sensitizing effect on NK cells for osteosarcoma therapy. Nanophotonics 2022, 11, 5101–5111.

    Article  CAS  Google Scholar 

  52. Liu, T.; Xu, L. G.; He, L. Z.; Zhao, J. F.; Zhang, Z. H.; Chen, Q.; Chen, T. F. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today 2020, 35, 100975.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund for Distinguished Young Scholars (No. 82225025), the National Natural Science Foundation of China (Nos. 21877049 and 32171296), China Postdoctoral Science Foundation (No. 2021M690066), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlin Wang, Xiaoling Li or Tianfeng Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zou, B., Zhu, S. et al. PD-L1-driven efficient enrichment and elimination of circulating cancer cells by magnetic MoSe2 nanosheet. Nano Res. 17, 4350–4358 (2024). https://doi.org/10.1007/s12274-023-6342-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6342-2

Keywords

Navigation