Skip to main content
Log in

Highly selective colorimetric determination of glutathione based on sandwich-structured nanoenzymes composed of gold nanoparticle–coated molecular imprinted metal–organic frameworks

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-structured composite nanoenzyme (NH2-MIL-101(Fe)@Au@MIP) was prepared using molecularly imprinted polymers, metal–organic frameworks, and gold nanoparticles and a highly selective glutathione (GSH) colorimetric sensor was constructed. The inner part of the composite nanoenzymes is a metal–organic framework loaded with gold nanoparticles (AuNPs), NH2-MIL-101(Fe)@Au, which has superior peroxidase-like activity compared with  NH2-MIL-101(Fe). This is due to the surface plasmon resonance effect of AuNPs. GSH can form strong Au–S bonds with AuNPs, which can significantly reduce the enzymatic activity of NH2-MIL-101(Fe)@Au, thereby changing the absorbance at 450 nm of the sensing system. The degree of change in absorbance is correlated with the concentration of GSH. In the outer part, the molecularly imprinted polymer with oxidized glutathione (GSSG) as a dummy template provided specific pores, which significantly improved the selectivity of the sensing system. The sensor showed good GSH sensing performance in the range 1 ~ 50 μM with a lower limit of detection (LOD) of 0.231 μM and good sensing performance in fetal bovine serum, indicating its high potential for clinical diagnostic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data cannot be shared for ethical/privacy reasons. The data underlying this article cannot be shared publicly due to the privacy of individuals that participated in the study. The data will be shared on reasonable request to the corresponding author. Correspondence: Tingli Qu E-mail:qutingli@126.com.

References

  1. Souri Z, Karimi N, Ahmad P (2021) The effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) and glutathione (GSH) on, under arsenic (As) toxicity. Int J Phytoremediat 23(9):945–957. https://doi.org/10.1080/15226514.2020.1870435

    Article  CAS  Google Scholar 

  2. Dong XQ, Chu LK, Cao X, Xiong QW, Mao YM, Chen CH, Bi YL, Liu J, Yan XM (2023) Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 28(1):2152607. https://doi.org/10.1080/13510002.2022.2152607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ren JY, Li SB, Wang CY, Hao YC, Liu ZP, Ma YZ, Liu G, Dai YF (2022) Glutathione protects against the meiotic defects of ovine oocytes induced by arsenic exposure via the inhibition of mitochondrial dysfunctions. Ecotox Environ Safe 230:113135. https://doi.org/10.1016/j.ecoenv.2021.113135

    Article  CAS  Google Scholar 

  4. Chang LF, He XW, Chen LX, Zhang YK (2017) A novel fluorescent turn-on biosensor based on QDs@GSH–GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. Nanoscale 9:3881–3888. https://doi.org/10.1039/c6nr09944k

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Chen JD, Zhou ZZ, Zhan SS, Xing ZY, Liu HY, Zhang LN (2022) Ultrasensitive and selective detection of glutathione by ammonium carbamate-gold platinum nanoparticles-based electrochemical sensor. Life 12:1142. https://doi.org/10.3390/life12081142

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huenchuguala S, Segura-Aguilar J (2024) Single-neuron neurodegeneration as a degenerative model for Parkinson’s disease. Neural Regen Res 19(3):529–535. https://doi.org/10.4103/1673-5374.380878

    Article  PubMed  Google Scholar 

  7. Zhang DD, Zhang HJ, Yang YZ, Zhong WB, Chen Q, Ren QX, Jin G, Zhang Y (2024) Differential identification of GSH for acute coronary syndrome using a colorimetric sensor based on nanoflower-like artificial nanozymes. Talanta 266:124967. https://doi.org/10.1016/j.talanta.2023.124967

    Article  CAS  PubMed  Google Scholar 

  8. Pavlidis A, Tsiasioti A, Tzanavaras PD (2023) Extraction and determination of free glutathione and its disulfide in various flour samples using liquid chromatography and on-line post column derivatization. Microchem J 193:109145. https://doi.org/10.1016/j.microc.2023.109145

    Article  CAS  Google Scholar 

  9. Saleem M, Hanif M, Rafiq M, Ali A, Raza H, Kim SJ, Lu CR (2023) Recent development on sensing strategies for small molecules detections. J Fluoresc. https://doi.org/10.1007/s10895-023-03387-w

    Article  PubMed  Google Scholar 

  10. Yang D, Liu JJ, Hu WL, Xiao Y, Chen HH, Long YL, Zheng HZ (2023) Nano-ferroelectric oxidase mimics for colorimetric detection of glutathione. Sensor Actuat B-Chem 393:134170. https://doi.org/10.1016/j.snb.2023.134170

    Article  CAS  Google Scholar 

  11. Sefid-Sefidehkhan Y, Mokhtari1 M, Jouyban A, Khoshkam M, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rahimpour E (2023) A smartphone digital image colorimetric method based on nanoparticles for determination of lamotrigine. Bioanalysis 15(15):915-926. https://doi.org/10.4155/bio-2023-0075

  12. Chen HY, Qiu QM, Sharif S, Ying SN, Wang YX, Ying YB (2018) Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. Acs Appl Mater Inter 10(28):24108–24115. https://doi.org/10.1021/acsami.8b04737

    Article  CAS  Google Scholar 

  13. Liu JT, Ye LY, Xiong WH, Liu TR, Yang H, Lei JP (2021) A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem Commun 57(22):2820–2823. https://doi.org/10.1039/d1cc00001b

    Article  CAS  Google Scholar 

  14. Sun ZJ, Sun YJ, Yang M, Jin H, Gui RJ (2021) A petal-shaped MOF assembled with a gold nanocage and urate oxidase used as an artificial enzyme nanohybrid for tandem catalysis and dual-channel biosensing. Nanoscale 13(30):13014–13023. https://doi.org/10.1039/d1nr02688g

    Article  CAS  PubMed  Google Scholar 

  15. Amini R, Rahimpour E, Jouyban A (2020) An optical sensing platform based on hexacyanoferrate intercalated layered double hydroxide nanozyme for determination of chromium in water. Anal Chim Acta 1117:9–17. https://doi.org/10.1016/j.aca.2020.04.001

    Article  CAS  PubMed  Google Scholar 

  16. Guo H, Ren XH, Song XY, Li X (2023) Preparation of SiO2@Ag@molecular imprinted polymers hybrid for sensitive and selective detection of amoxicillin using surface-enhanced Raman scattering. Spectrochim Acta A 291:122365. https://doi.org/10.1016/j.saa.2023.122365

    Article  CAS  Google Scholar 

  17. Xie ZJ, Shi MR, Wang LY, Peng CF, Wei XL (2020) Colorimetric determination of Pb2+ ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic. Microchim Acta 187(4):255. https://doi.org/10.1007/s00604-020-04234-6

    Article  CAS  Google Scholar 

  18. Liu C, Zhang M, Geng HQ, Zhang P, Zheng Z, Zhou YL, He WW (2021) NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl Catal B-Environ 295:120317. https://doi.org/10.1016/j.apcatb.2021.120317

    Article  CAS  Google Scholar 

  19. Karadurmus L, Bilge S, Sinag A, Ozkan SA (2022) Molecularly imprinted polymer (MIP)-based sensing for detection of explosives: current perspectives and future applications. Trac-Trend Anal Chem 155:116694. https://doi.org/10.1016/j.trac.2022.116694

    Article  CAS  Google Scholar 

  20. Shahhoseini F, Azizi A, Bottaro CS (2022) A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trac-Trend Anal Chem 156:116695. https://doi.org/10.1016/j.trac.2022.116695

    Article  CAS  Google Scholar 

  21. Azhdary P, Janfaza S, Fardindoost S, Tasnim N, Hoorfar M (2023) Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection. Anal Chim Acta 1278:341749. https://doi.org/10.1016/j.aca.2023.341749

    Article  CAS  PubMed  Google Scholar 

  22. Zhang M, Zhang XH, He XM, Chen LX, Zhang YK (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4:3141–3147. https://doi.org/10.1039/c2nr30316g

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Guo ZY, Sun Y, Zhang LR, Ding Q, Chen W, Yu H, Liu QY, Fu M (2022) Surface imprinted core-shell nanorod for selective extraction of glycoprotein. J Colloid Interf Sci 615:597–605. https://doi.org/10.1016/j.jcis.2022.02.019

    Article  ADS  CAS  Google Scholar 

  24. Amiripour F, Ghasemi S, Azizi SN (2021) Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem 347:129034. https://doi.org/10.1016/j.foodchem.2021.129034

    Article  CAS  PubMed  Google Scholar 

  25. Mohammadzadeh Abachi S, Rezaei H, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rahimpour E, Jouyban A (2023) Utilizing nanoparticle catalyzed TMB/H2O2 system for determination of aspirin in exhaled breath condensate. Pharm Sci 29(3):368–375. https://doi.org/10.34172/PS.2022.21

  26. Chai HN, Yu K, Zhao YM, Zhang ZY, Wang SS, Huang CN, Zhang XJ, Zhang GY (2023) MOF-on-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing. Anal Chem 95(28):10785–10794. https://doi.org/10.1021/acs.analchem.3c01905

  27. Wang LJ, Wen LJ, Zheng SJ, Tao FF, Chao J, Wang F, Li CL (2022) Integrating peroxidase-mimicking NH-MIL-101(Fe) with molecular imprinting for high-performance ratiometric fluorescence sensing of domoic acid. Sensor Actuat B-Chem 361:131688. https://doi.org/10.1016/j.snb.2022.131688

    Article  CAS  Google Scholar 

  28. Young AJ, Sauer M, Rubio G, Sato A, Foelske A, Serpell CJ, Chin JM, Reithofer MR (2019) One-step synthesis and XPS investigations of chiral NHC-Au(0)/Au(i) nanoparticles. Nanoscale 11(17):8327–8333. https://doi.org/10.1039/c9nr00905a

  29. Wu GL, Zhao YD, Li XF, Lu XL, Qu TL (2022) Fluorescent probes based on the core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection. Anal Methods-Uk 14(48):5034–5040. https://doi.org/10.1039/d2ay01363k

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Basic Research Program of Shanxi Province (NO. 20210302124586) and Shanxi Provincial Technology Innovation Center Project (NO. 202104010911006).

Author information

Authors and Affiliations

Authors

Contributions

XL: conceptualization, resources, visualization, data curation, formal analysis, investigation, methodology, writing—original draft; LY: methodology, validation; XZ: investigation; TQ: conceptualization, methodology, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Tingli Qu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4.15 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Yan, L., Zhou, X. et al. Highly selective colorimetric determination of glutathione based on sandwich-structured nanoenzymes composed of gold nanoparticle–coated molecular imprinted metal–organic frameworks. Microchim Acta 191, 140 (2024). https://doi.org/10.1007/s00604-023-06167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06167-2

Keywords

Navigation