Skip to main content
Log in

Recent Development on Sensing Strategies for Small Molecules Detections

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV–visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1

© 2017 Elsevier B.V. All rights reserved

Fig. 2
Fig. 3
Fig. 4
Fig. 5

© 2019 American Chemical Society

Fig. 6
Fig. 7
Fig. 8

© 2018 Elsevier B.V. All rights reserved

Fig. 9
Fig. 10
Fig. 11
Fig. 12

© 2012, American Chemical Society

Fig. 13

© 2019, American Chemical Society

Fig. 14

© 2022 Wiley‐VCH GmbH

Fig. 15

© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 16

© 2015, American Chemical Society

Fig. 17

© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 18

© 2010, American Chemical Society

Fig. 19
Fig. 20
Fig. 21
Fig. 22

© 2019, American Chemical Society

Fig. 23

© 2020, American Chemical Society

Fig. 24
Fig. 25
Fig. 26

© 1999 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany

Fig. 27

© 2004, American Chemical Society

Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data Availability Statement

Data will be available from corresponding author on demand.

References

  1. Yan Z, Yuen M, Hu L, Sun P, Lee C (2014) Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Adv 4:48373–48388

    Article  CAS  Google Scholar 

  2. Beatty MA, Selinger AJ, Li YuQi, Hof F (2019) Parallel Synthesis and Screening of Supramolecular Chemosensors That Achieve Fluorescent Turn-on Detection of Drugs in Saliva. J Am Chem Soc 141(42):16763–16771

    Article  CAS  PubMed  Google Scholar 

  3. Hu M, Razavi SAA, Piroozzadeh M, Morsali A (2020) Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorg Chem Front 7:1598–1632

    Article  CAS  Google Scholar 

  4. Sharma H, Kaur N, Singh A, Kuwar A, Singh N (2016) Optical Chemosensors for Water Sample Analysis. J Mater Chem C 4:5154–5194

    Article  CAS  Google Scholar 

  5. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Li Z, Tao D, Zhang Q, Zhang P, Guo P, Jiang Y (2016) Supramolecular aggregates as sensory ensembles. Chem Commun 52:12929

    Article  CAS  Google Scholar 

  7. Wang T, Zhang N, Baic W, Bao Y (2020) Fluorescent chemosensors based on conjugated polymers with N heterocyclic moieties: two decades of progress. Polym Chem 11:3095

    Article  CAS  Google Scholar 

  8. Liu Z, Li S, Ge G, Li Y, Zhao C, Zhang H, Yang Z (2019) A novel nitrogen heterocycle platform-based highly selective and sensitive fluorescence chemosensor for the detection of Al3+ and its application in cell imaging. RSC Adv 9:5377–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754–1808

    Article  CAS  PubMed  Google Scholar 

  10. Bian Z, Liu A, Li Y, Fang G, Yao Q, Zhange G, Wu Z (2020) Boronic acid sensors with double recognition sites: a review. Analyst 145:719–744

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Kim DS, Lin C, Zhang H, Lammer AD, Lynch VM, Popov I, Miljani OS, Anslyn EV, Sessler JL (2015) Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions. J Am Chem Soc 137(24):7769–7774

    Article  CAS  PubMed  Google Scholar 

  12. Woo H, Cho S, Han Y, Chae W, Ahn D, You Y, Nam W (2013) Synthetic Control Over Photoinduced Electron Transfer in Phosphorescence Zinc Sensors. J Am Chem Soc 135(12):4771–4787

    Article  CAS  PubMed  Google Scholar 

  13. Yuan L, Lin W, Yang Y, Chen H (2012) A Unique Class of Near-Infrared Functional Fluorescent Dyes with Carboxylic-Acid-Modulated Fluorescence ON/OFF Switching: Rational Design, Synthesis, Optical Properties, Theoretical Calculations, and Applications for Fluorescence Imaging in Living Animals. J Am Chem Soc 134:1200–1211

    Article  CAS  PubMed  Google Scholar 

  14. Yang Z, Cao J, He Y, Yang JH, Kim T, Peng X, Kim JS (2014) Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem Soc Rev 43:4563–4601

    Article  CAS  PubMed  Google Scholar 

  15. Qi XN, Dang LR, Qu WJ, Zhang YM, Yao H, Lin Q, Wei TB (2020) Based on the phenazine derivatives for optical sensing: a review. J Mater Chem C 8:11308–11339

    Article  CAS  Google Scholar 

  16. Yang H, Wan J, Shua H, Liu X, Lakshmanan RS, Guntupallia R, Hu J, Howard W, Chin BA (2006) Hydrazine Leak Detection Using Poly (3-hexylthiophene) Thin Film Micro-sensor. Sensors for Propulsion Measurement Application 6222:62220S-S62222

    Article  Google Scholar 

  17. Wang G, Zhang C, He X, Li Z, Zhang X, Wang L, Fang B (2010) Detection of hydrazine based on Nano-Au deposited on Porous-TiO2 film. Electrochim Acta 55:7204–7210

    Article  CAS  Google Scholar 

  18. Srinidhi G, Sudalaimani S, Giribabu K, Sardhar Basha SJS, Suresh C (2020) Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode. Microchimica Acta 187:359–369

  19. Manna SK, Gangopadhyay A, Maiti K, Mondal S, Mahapatra AK (2019) Recent Developments in Fluorometric and Colorimetric Chemodosimeters Targeted towards Hydrazine Sensing: Present Success and Future Possibilities. ChemistrySelect 4:7219–7245. https://doi.org/10.1002/slct.201803685

    Article  CAS  Google Scholar 

  20. Shi B, Qi S, Yu M, Liu C, Li Z, Wei L, Ni Z (2018) Colorimetric and fluorescent detection of hydrazine with high sensitivity and excellent selectivity. Spectrochim Acta Part A Mol Biomol Spectrosc 188:208–212

    Article  CAS  Google Scholar 

  21. Cui L, Peng Z, Ji C, Huang J, Huang D, Ma J, Zhang S, Qian X, Xu Y (2014) Hydrazine detection in the gas state and aqueous solution based on the Gabriel mechanism and its imaging in living cells. Chem Commun 50:1485–1487

    Article  CAS  Google Scholar 

  22. Ye H, Chen L, Wang X, Lu D (2021) A highly sensitive fluorescent probe for hydrazine detection: synthesis, characterisation and application in living cells. Int J Environ Anal Chem 101:1086–1098

    Article  CAS  Google Scholar 

  23. Shin MC, Lee Y, Park SB, Kim E (2019) Development of Azo-Based Turn-On Chemical Array System for Hydrazine Detection with Fluorescence Pattern Analysis. ACS Omega 4(12):14875–14885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ju Z, Li D, Zhang D, Li D, Wu C, Xu Z (2017) An ESIPT-Based Fluorescent Probe for Hydrazine Detection in Aqueous Solution and its Application in Living Cells. J Fluoresc 27:679–687

    Article  CAS  PubMed  Google Scholar 

  25. Paul S, Nandi R, Ghoshal K, Bhattacharyy M, Maiti KK (2019) A smart sensor for rapid detection of lethal hydrazine in human blood and drinking water. New J Chem 43:3303–3308

    Article  CAS  Google Scholar 

  26. Tiensomjitr K, Noorat R, Chomngam S, Wechakorn K, Prabpai S, Kanjanasirirat P, Pewkliang Y, Borwornpinyo S, Kongsaeree P (2018) A chromogenic and fluorogenic rhodol-based chemosensor for Hydrazine detection and its application in live cell bioimaging. Spectrochim Acta Part A Mol Biomol Spectrosc 195:136–141

    Article  CAS  Google Scholar 

  27. Liu J, Jiang J, Dou Y, Zhang F, Liu X, Qu J, Zhu Q (2019) A novel chemiluminescent probe for hydrazine detection in water and HeLa cells. Org Biomol Chem 17:6975–6979

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Wu X, Tao F, Yang S, Tian H, Liu Y, Sun B (2018) A Highly Selective and Colorimetric Fluorescent Probe for Hydrazine Detection in Water Samples. Analytical Science 34:1297–1302

    Article  CAS  Google Scholar 

  29. Block CD, Manuel-y-Keenoy B (2008) A Review of Current Evidence with Continuous Glucose Monitoring in Patients with Diabetes. J Diabetes Sci Technol 2:718–727

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349

    Article  CAS  PubMed  Google Scholar 

  32. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng, C 41:100–118

    Article  CAS  Google Scholar 

  33. Rahman MM, Ahammad AJS, Jin JH, Ahn SJ, Lee JJ (2010) A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors 10:4855–4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee H, Hong YJ, Baik S, Hyeon T, Kim D (2018) Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthcar Mater 7(1701150):1–14

  35. Enter BJV, Hauff EV (2018) Challenges and Perspectives in Continuous Glucose Monitoring. Chem Com 54:5032–5045

    Article  Google Scholar 

  36. Toncelli C, Malini RI, Jankowsk D, Spano F, Colfen H, Maniura-Weber K, Rossi RM, Boesel LF (2018) Optical glucose sensing using ethanolamine-polyborate Complexes. J Mater Chem B 6:816–823

    Article  CAS  PubMed  Google Scholar 

  37. Metzger M, Leibowitz G, Wainstein J, Glaser B, Raz I (2002) Reproducibility of Glucose Measurements Using the Glucose Sensor. Diabetes Care 25:1185–1191

    Article  CAS  PubMed  Google Scholar 

  38. Liao YT, Yao H, Lingley A, Parviz B (2012) A 3- µ W CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring. IEEE J Solid-State Circuits 47:335–344

    Article  Google Scholar 

  39. Ding Y, Wang Y, Su L, Bellagamb M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

    Article  CAS  PubMed  Google Scholar 

  40. Strakosas X, Selberg J, Pansodtee P, Yonas N, Manapongpun P, Teodorescu M, Rolandi M (2019) A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci Rep 9:10844–10851

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar R (2016) Health effects of morpholine based coating for fruits and vegetables. International Journal of Medical Research & Health Sciences 5(9):32–38

    CAS  Google Scholar 

  42. Oliveira SM, Siguemura A, Lima HO, Souza FC, Magalhães AAO, Toledo RM, Delia E (2014) Flow Injection Analysis with Amperometric Detection for Morpholine Determination in Corrosion Inhibitors. J Braz Chem Soc 25:1399–1406

    Google Scholar 

  43. Cao M, Zhang P, Feng Y, Zhang H, Zhu H, Lian K, Kang W (2018) Development of a Method for Rapid Determination of Morpholine in Juices and Drugs by Gas Chromatography-Mass Spectrometry. J Analyt Meth Chem 1–8. https://doi.org/10.1155/2018/9670481

  44. Hecht SS, Morrison JB (1984) A sensitive method for detecting In Vivo formation of N-nitrosomorpholine and its application to Rats given low doses of Morpholine and Sodium Nitrite. Cancer Res 44:2873–2877

    CAS  PubMed  Google Scholar 

  45. An K, Kim I, Lee C, Moon JK, Suh HJ, Lee J (2020) Quantification of Morpholine in Peel and Pulp of Apples and Oranges by Gas Chromatography-Mass Spectrometry. Foods 9:746-758. https://doi.org/10.3390/foods9060746

  46. Walker MJ, Gray K, Hopley C, Bell D, Colwell P, Maynard P, Burns DT (2012) Forensically Robust Detection of the Presence of Morpholine in Apples—Proof of Principle. Food Anal Methods 5:874–880

    Article  Google Scholar 

  47. Gilbert R, Rioux R (1984) Ion Chromatographic Determination of Morpholine and Cyclohexylamine in Aqueous Solutions Containing Ammonia and Hydrazine. Anal Chem 56:106–109

    Article  CAS  Google Scholar 

  48. Kolliopoulos AV, Metters JP, Banks CE (2015) Quantification of corrosion inhibitors used in the water industry for steam condensate treatment: the indirect electroanalytical sensing of morpholine and cyclohexylamine. Environ Sci: Water Res Technol 1:40–46

    CAS  Google Scholar 

  49. Malowan LS (1940) A Methods of Qualitative Determination of Morpholine. Mikrochemie vereinigt mit Mikrochimica Acta 28:285–288

    Article  CAS  Google Scholar 

  50. Skipskir V, Petersoannd O, Arclay M (1962) Separation of phosphatidyl ethanolamine, phosphatidyl serine, and other phospholipids by thin-layer chromatography. J Lip Res 467–470

  51. Patel D, Witt SN (2017) Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxid Med Cell Longev 2017:1–18. https://doi.org/10.1155/2017/4829180

    Article  CAS  Google Scholar 

  52. Sørensen L, Silva EF, Brakstad OG, Zahlsen K, Booth A (2013) Preliminary studies into the environmental fate of nitrosamine and nitramine compounds in aquatic systems. Energy Procedia 37:683–690

    Article  Google Scholar 

  53. Sikarwar B, Sharma PK, Tripathi BK, Boopathi M, Singh B, Jaiswal YK (2016) Enzyme Based Electrochemical Biosensor for Ethanolamine. Electroanalysis 28:881–889

    Article  CAS  Google Scholar 

  54. Shin KO, Lee YM (2016) Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetics products using liquid chromatography coupled tandem mass spectrometry. Arch Pharmacal Res 39:66–72

    Article  CAS  Google Scholar 

  55. Lim DS, Roh TH, Kim MK, Kwon YC, Choi SM, Kwack SJ, Kim KB, Yoon S, Kim HS, Lee BM (2018) Risk assessment of N-nitrosodiethylamine (NDEA) and N-nitrosodiethanolamine (NDELA) in cosmetics. J Toxicol Environ Health A 81:465–480

    Article  CAS  PubMed  Google Scholar 

  56. Henriks-Eckerman ML, Suuronen K, Jolanki R, Riala R, Tuomi T (2007) Determination of Occupational Exposure to Alkanolamines in Metal-Working Fluids. Ann Occup Hyg 51(2007):153–160. https://doi.org/10.1093/annhyg/mel079

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Song WF, Shi YB, Qing ZW (2021) Detection of alkanolamines in liquid cement grinding aids by HPLC coupled with evaporative light scattering detector. Turk J Chem 45:430–435

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Takeuchi A, Kitade T, Jukurogi A, Hendricks W, Kaifuku Y, Shibayama K, Natsumeda S, Ota H, Yamada S, Sumino K, Namera A, Kanno S (2012) Determination Method for Mono- and Diethanolamine in Workplace Air by High-performance Liquid Chromatography. J Occup Health 54:340–343

    Article  CAS  PubMed  Google Scholar 

  59. Niina N, Kodamatani H, Uozumi K, Kokufu Y, Saito K, Yamazaki S (2005) Simaltaneous detection of Monoethanolamine, Diethanolamine and Triethanolamine by HPLC with a chemiluminescence reaction and online derivatization to tertiary amine. Anal Sci 21:497–500

    Article  CAS  PubMed  Google Scholar 

  60. Chou HJ (1998) Determination of Diethanolamine and 7V-Nitrosodiethanolamine in Fatty Acid Diethanolamides. J AOAC Int 81:943–947

    Article  CAS  PubMed  Google Scholar 

  61. Moullec SL, Juillet Y, Bégos A, Bellier B (2006) Applications of Deactivated GC Columns for Analysis of Nitrogen-Containing Chemicals Related to the Chemical Weapons Convention. J Chromatogr Sci 44:162–166

    Article  PubMed  Google Scholar 

  62. Bord N, Cretier G, Rocca JL, Bailly C, Souchez JP (2004) Determination of diethanolamine or N-methyldiethanolamine in high ammonium concentration matrices by capillary electrophoresis with indirect UV detection: application to the analysis of refinery process waters. Anal Bioanal Chem 380:325–332

    Article  CAS  PubMed  Google Scholar 

  63. Heilkenbrinker A, Reinemann C, Stoltenburg R, Walter JG, Jochums A, Stahl F, Zimmermann S, Strehlitz B, Scheper T (2015) Identification of the Target Binding Site of Ethanolamine-Binding Aptamers and Its Exploitation for Ethanolamine Detection. Anal Chem 87:677–685

    Article  CAS  PubMed  Google Scholar 

  64. Coutinho BG, Mevers E, Schaefer AL, Pelletier DA, Harwood CS, Clardy J, Greenberg EP. A plant-responsive bacterial-signaling system senses an ethanolamine derivative. PNAS (Biological Sciences) 115(39):9785–9790. https://doi.org/10.1073/pnas.1809611115

  65. Haick H, Broza YY, Mochalski P, Ruzsanyib V, Amann A (2014) Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev 43:1423–1449

    Article  CAS  PubMed  Google Scholar 

  66. Minami T, Esipenko NA, Zhang B, DIsaacs L, Nishiyabu R, Kubo Y (2012) Anzenbacher, P. Supramolecular Sensor for Cancer-Associated Nitrosamines. J Am Chem Soc 134:1–4

  67. Wang LH, Hsia HC, Wang CC (2006) Simultaneous Determination of Five Volatile and Non-Volatile N-Nitrosamines in Biological Fluids and Cosmetic Products by Liquid Chromatography with Photodiode Array Detection. J Liq Chromatogr Relat Technol 29:1737–1751

    Article  CAS  Google Scholar 

  68. Joo KM, Shin MS, Jung JH, Kim BM, Lee JW, Jeong HJ, Lim KM (2015) Determination of N nitrosodiethanolamine, NDELA in cosmetic ingredients and products by mixed mode solid phase extraction and UPLC–tandem mass spectrometry with porous graphitic carbon column through systemic sample pre-cleanup procedure. Talanta 137:109–119

    Article  CAS  PubMed  Google Scholar 

  69. Ghassempour A, Abbaci M, Talebpour Z, Spengler B, R¨ompp Z (2008) Monitoring of N-nitrosodiethanolamine in cosmetic products by ion-pair complex liquid chromatography and identification with negative ion electrospray ionization mass spectrometry. J Chromatograp A 1185:43–48

  70. Li X, He X, Dong Y, Jia L, He Q (2016) Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment. J Food Drug Anal 24:311–315

    Article  PubMed  PubMed Central  Google Scholar 

  71. Matyska MT, Pesek JJ, Yang L (2000) Screening method for determining the presence of N-nitrosodiethanolamine in cosmetics by open-tubular capillary Electrochromatography. J Chromatogr A 887:497–503

    Article  CAS  PubMed  Google Scholar 

  72. Roussakis E, Li Z, Nichols AJ, Evans CL (2015) Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed 54:8340–8362

    Article  CAS  Google Scholar 

  73. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  PubMed  Google Scholar 

  74. Genereux JC, Boal AK, Barton JK (2010) DNA-Mediated Charge Transport in Redox Sensing and Signaling. J Am Chem Soc 132:891–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aruna Rani B, Swami S, Agarwala A, Behera D, Shrivastava R (2019) Recent progress in development of 2,3-diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species. RSC Adv 9:30599–30614

  76. Wang XD, Chen X, Xie ZX, Wang X (2008) Reversible Optical Sensor Strip for Oxygen. Angew Chem Int Ed 47:7450–7453

    Article  CAS  Google Scholar 

  77. Pronin D, Krishnakumar S, Rychlik M, Wu H, Huang D (2019) Development of a Fluorescent Probe for Measurement of Singlet Oxygen Scavenging Activity of Flavonoids. J Agric Food Chem 67(38):10726–10733

    Article  CAS  PubMed  Google Scholar 

  78. Kagalwala HN, Gerberich J, Smith CJ, Mason RP, Lippert AR (2022) Chemiluminescent 1,2-Dioxetane Iridium Complexes for Near-Infrared Oxygen Sensing. Angew Chem Int Ed 61:e202115704

    Article  CAS  Google Scholar 

  79. Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric Molecular Sensor for Monitoring Oxygen Levels in Living Cells. Angew Chem Int Ed 51:4148–4151

    Article  CAS  Google Scholar 

  80. Lemon CM, Karnas E, Han X, Bruns OT, Kempa TJ, Fukumura D, Bawendi MG, Jain RK, Duda DG, Nocera DG (2015) Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors. J Am Chem Soc 137(31):9832–9842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu C, Bull B, Christensen K, McNeill J (2009) Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angew Chem Int Ed 48:2741–2745

    Article  CAS  Google Scholar 

  82. Winter MB, McLaurin EJ, Reece SY, Olea C Jr, Nocera DG, Marletta MA (2010) Ru-Porphyrin Protein Scaffolds for Sensing O2. J Am Chem Soc 132:5582–5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shanmugaraju S, Mukherjee PS (2015) π-electron rich small molecule sensors for the recognition of Nitroaromatics. Chem Commun 51:16014–16032

    Article  CAS  Google Scholar 

  84. Shi ZQ, Ji NN, Hu HL (2020) Luminescent triphenylamine-based metal–organic frameworks: recent advances in nitroaromatics detection. Dalton Trans 49:12929–12939

    Article  CAS  PubMed  Google Scholar 

  85. Hu XL, Qin C, Wang XL, Shao KZ, Su ZM (2015) A luminescent Dye@MOF as dual-emitting platform for sensing Explosives. Chem Commun 51:17521–17524

    Article  CAS  Google Scholar 

  86. Wu XX, Fu HR, Han ML, Zhou Z, Ma LF (2017) Tetraphenylethylene immobilized metal-1 organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O7 and nitroaromatic explosives. Cryst Growth Des 17(11):6041–6048

    Article  CAS  Google Scholar 

  87. Zhang Y, Yang Q, Li X, Miao C, Hou Q, Ai S (2020) One Cu(I)-I coordination polymer fluorescent chemosensor with amino-rich sites for nitro aromatic compounds (NACs) detection in water. CrystEngComm 22:5690–5697

    Article  CAS  Google Scholar 

  88. Hu XL, Liu FH, Qin C, Shao KZ, Su ZM (2015) A 2D bilayer metal-organic framework as fluorescence sensor for highly selective sensing of nitro explosives. Dalton Trans 44:7822–7827

    Article  CAS  PubMed  Google Scholar 

  89. Hu XL, Qin C, Wang XL, Shao KZ, Su ZM (2015) Cluster-based metal–organic framework as sensitive and selective luminescent probes for sensing nitro explosives. New J Chem 39:7858–7862

    Article  CAS  Google Scholar 

  90. Xia L, Ni J, Wu P, Ma J, Bao L, Shi Y, Wang J (2018) Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4’-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Trans 47:16551–16557

    Article  CAS  PubMed  Google Scholar 

  91. Xu W, Chen H, Xia Z, Ren C, Han J, Sun W, Wei Q, Xie G, Chen S (2019) A Robust TbIII-MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host−Guest Interactions. Inorg Chem 58(12):8198–8207

    Article  CAS  PubMed  Google Scholar 

  92. Fu HR, Yan LB, Wu NT, Ma LF, Zang SQ (2018) Dual-emission MOF-dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. J Mater Chem A 6:9183–9191

    Article  CAS  Google Scholar 

  93. Ngue CM, Leung MK, Lu KL (2020) An Electroactive Zinc-based Metal−Organic Framework: Bifunctional Fluorescent Quenching Behavior and Direct Observation of Nitrobenzene. Inorg Chem 59(5):2997–3003

    Article  CAS  PubMed  Google Scholar 

  94. Maka VK, Mukhopadhyay A, Savitha G, Moorthy JN (2018) Fluorescent 2D metal–organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale 10:22389–22399

    Article  CAS  PubMed  Google Scholar 

  95. Ji NN, Shi ZQ, Hu HL, Zheng HG (2018) Triphenylamine-functionalized luminescent sensor for efficient pnitroaniline Detection. Dalton Trans 47:7222–7228

    Article  CAS  PubMed  Google Scholar 

  96. Ferreiro T, Gayoso L, Rodríguez-Otero JL (2017) Determination of Phospholipids in Milk by HPLC with Evaporative Light Scattering Detector: Optimization and Validation. Journal of Dairy and Veterinary Sciences 1(3):1–5. https://doi.org/10.19080/JDVS.2017.01.555562

    Article  Google Scholar 

  97. TomaÁ S, Prohens R, Deslongchamps G, Ballester P, Costa A (1999) An Effective Fluorescent Sensor for Choline- Containing Phospholipids. Angew Chem Int Ed 38:2208–2211

    Article  Google Scholar 

  98. Fang JM, Selvi S, Liao JH, Slanina Z, Chen CT, Chou PT (2004) Fluorescent and Circular Dichroic Detection of Monosaccharides by Molecular Sensors: Bis[(Pyrrolyl)ethynyl]naphthyridine and Bis[(Indolyl)ethynyl]naphthyridine. J AM CHEM SOC 126:3559–3566

    Article  CAS  PubMed  Google Scholar 

  99. Hashemzadeh T, Haghighatbin MA, Agugiaro J, Wilson DDJ, Hogan CF, Barnard PJ (2020) Luminescent iridium(III)-boronic acid complexes for carbohydrate sensing. Dalton Trans 49:11361–11374

  100. Lee JW, Lee JS, Chang YT (2006) Colorimetric Identification of Carbohydrates by a pH Indicator/pH Change Inducer Ensemble. Angew Chem Int Ed 45:6485–6487

    Article  CAS  Google Scholar 

  101. Abedalwafa MA, Li Y, Ni C, Wang L (2019) Colorimetric sensor arrays for the detection and identification of antibiotics. Anal Methods 11:2836–2854

    Article  Google Scholar 

  102. Li H, Lin H, Lv W, Gai P, Li F (2020) Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosens Bioelectron 165:112336

    Article  CAS  PubMed  Google Scholar 

  103. Li h, Wang C, Hou T, Li F (2017) Amphiphile-Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing. Anal Chem 89(17):9100–9107

  104. Chen J, Yang C, Nie H, Li H (2023) Aptamer recognition-promoted hybridization chain reaction for amplified label-free and enzyme-free fluorescence analysis of pesticide. Spectrochim Acta A: Mol Biomol Spectrosc 293:122451

    Article  CAS  PubMed  Google Scholar 

  105. Wang CS, Huang Q, Wang X, Zhang YT, Ma DS, Yu YH, Gao JS (2019) Three new coordination polymers based on bis(4-(4H–1,2,4-triazol-4-yl)phenyl)methane: syntheses, structures, multiresponsive luminescent sensitive detection for antibiotics and pesticides, and antitumor activities. RSC Adv 9:42272–42283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bansal D, Gupta R (2019) Selective sensing of ATP by hydroxide bridge dizinc (II) complexes offering hydrogen bonding cavity. Dalton Trans 48:14737–14747

    Article  CAS  PubMed  Google Scholar 

  107. Sanceno F, Descalzo AB, Martínez-MaÂnÄ R, Miranda M, Soto J (2001) A Colorimetric ATP Sensor Based on 1,3,5-Triarylpent-2-en-1,5-diones. Angew Chem Int Ed 40:2640–2643

    Article  Google Scholar 

  108. Song Y, Fan R, Dua X, Xing K, Dong Y, Wang P, Yang Y (2016) Dual functional fluorescent sensor 1 for selectively detecting acetone and Fe3+ based on Cu2N4 substructure bridged Cu(I) coordination polymer. RSC Adv 6:110182–110189

    Article  CAS  Google Scholar 

  109. Tang Y, Huang H, Peng B, Chang Y, Li Y, Zhong C (2020) Thiadiazole-Based Covalent Triazine Framework Nanosheet for Highly Selective and Sensitive Primary Aromatic Amines Detection among Various Amines. J Mater Chem A 8:16542–16550

    Article  CAS  Google Scholar 

  110. Maue M, Schrader T (2005) A Color Sensor for Catecholamines. Angew Chem Int Ed 44:2265–2270

    Article  CAS  Google Scholar 

  111. Li Z, Xiong W, He X, Qi X, Ding F, Shen J (2020) A Novel Strategy of Rhodamine B-based Fluorescent Probe for Selective Response of Glutathione to Serve as Bioimaging in Living Cells. Analyst 145:4239–4244

    Article  CAS  PubMed  Google Scholar 

  112. David E, Viswanathan T, Prabu S, Palanisami N (2019) N-Arylated bisferrocene pyrazole for the dual-mode detection of hydrogen peroxide: an AIE-active fluorescent ‘“turn ON/OFF”’and electrochemical non-enzymatic sensor. New J Chem 43:8539–8550

    Article  CAS  Google Scholar 

  113. Hu X, Wang F, Peng Q, Hu J, Peng H, Li L, Zheng B, Du J, Xiao D (2019) Construction of a luminescent sensor based on a lanthanide complex for the highly efficient detection of methyl parathion. RSC Adv 9:13048–13053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yan H, Yue Y, Yin C, Zhang Y, Chao J, Huo F (2020) A water-soluble fluorescent probe for the detection of thiophenols in water samples and in cells imaging. Spectrochim Acta A Mol Biomol Spectrosc 15(229):117905. https://doi.org/10.1016/j.saa.2019.117905.

Download references

Acknowledgements

This study was supported by University of Sargodha and Thal University Bhakkar.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Material collection, data collection and write-up were performed by Muhammad Saleem, Muhammad Hanif and Muhammad Rafiq. Anser Ali, Hussain Raza, Dr. Kim Song Ja and Dr. Changrui Lu provide technical assistance.

Corresponding author

Correspondence to Muhammad Saleem.

Ethics declarations

Declaration of Generative AI and AI-assisted Technologies in the Writing Process

During the preparation of this work the author(s) used [CHATGPT] in order of GRAMMATIC CORRECTION. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Ethics Declaration Statement

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publications

Not Applicable.

Conflict of Interest/Competing Interest

Author declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Hanif, M., Rafiq, M. et al. Recent Development on Sensing Strategies for Small Molecules Detections. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03387-w

Keywords

Navigation