Skip to main content
Log in

Dispersive solid phase extraction based on cross-linked hydroxypropyl β-cyclodextrin polymers for simultaneous enantiomeric determination of three chiral triazole fungicides in water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient method is presented for simultaneous enantioselective determination of three chiral triazole fungicides (namely paclobutrazol, hexaconazole, and diniconazole) in water samples by DSPE-HPLC–UV. The perfect chiral separation of the enantiomers was achieved on a Chiralpak IH column within 15 min. In order to adsorb and enrich the analytes from water matrices, a cross-linked hydroxypropyl β-cyclodextrin polymer was synthesized. The prepared material exhibited good adsorption capacity, which was assessed by adsorption kinetic and adsorption thermodynamic experiments. One-variable-at-a-time and the response surface methodology were used to optimize the extraction parameters. Under the optimum sample preparation conditions, good linearity (2.0 ~ 800 µg L−1, R2 ≥ 0.9978), detection limits (0.6 to 1.0 µg L−1), quantitation limits (2.0 to 3.2 µg L−1), recoveries (86.7 ~ 105.8%), and the relative standard deviation (intra-day RSD ≤ 3.7%, inter-day RSD ≤ 5.1%) were obtained, satisfying the requirements of pesticides residues determination. These results demonstrated that the proposed method was applicable for routine determination of chiral triazole fungicide residues in water samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palasak J, Buppasang R, Kachangoon R, Vichapong J, Burakham R, Santaladchaiyakit Y, Srijaranai S (2022) Preconcentration of triazole fungicides using effervescent assisted switchable hydrophilicity solvent-based microextraction prior to high-performance liquid chromatographic analysis. Microchem J 182:107882

    Article  CAS  Google Scholar 

  2. Lu Z-H, Tian Q, Zhou D-D, Chen M, Cao Y-W, Zhuang L-Y, Liu X, Yang Z-H, Senosy IA (2022) Magnetic MXene based metal organic frameworks composites: synthesis, characterization and application. J Environ Chem Eng 10(3):108037

    Article  CAS  Google Scholar 

  3. Zhou J, Zhang J, Li F, Liu J (2016) Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. J Hazard Mater 308:294–302

    Article  CAS  PubMed  Google Scholar 

  4. Marx-Stoelting P, Rieke S, Kneuer C, Scheer MB, Lampen A, Hirsch-Ernst K (2012) Cumulative effects of three triazole fungicides in a broad dose range in vitro. Toxicol Lett 211:S157

    Article  Google Scholar 

  5. Zhao P, Wang Z, Li K, Guo X, Zhao L (2018) Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 1568:8–21

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Gao B, Li L, Zhang Q, Xia W, Wang M (2018) Enantioselective degradation and transformation of the chiral fungicide prothioconazole and its chiral metabolite in soils. ScicTotal Environ 634:875–883

    CAS  Google Scholar 

  7. Kaziem AE, Gao B, Li L, Zhang Z, He Z, Wen Y, Wang M-h (2020) Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole. J Hazard Mater 386:121951

    Article  CAS  PubMed  Google Scholar 

  8. Stehmann C, De Waard MA (1995) Relationship between chemical structure and biological activity of triazole fungicides against Botrytis cinerea. Pestic Sci 44(2):183–195

    Article  CAS  Google Scholar 

  9. Jia C, Mi Y, Liu Z, Zhou W, Gao H, Zhang S, Lu R (2020) Attapulgite modified with covalent organic frameworks as the sorbent in dispersive solid phase extraction for the determination of pyrethroids in environmental water samples. Microchem J 153:104522

    Article  CAS  Google Scholar 

  10. Singh P, Ren X, Guo T, Wu L, Shakya S, He Y, Wang C, Maharjan A, Singh V, Zhang J (2018) Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohyd Polym 190:23–30

    Article  CAS  Google Scholar 

  11. Kang W, Zhu Z, Yang H, Tian S, Wang P, Zhang X, Lashari ZA (2019) Study on the association behavior of a hydrophobically modified polyacrylamide in aqueous solution based on host-guest inclusion. J Mol Liq 275:544–553

    Article  CAS  Google Scholar 

  12. Arslan M, Yilmaz Sengel T, Guler E, Gumus ZP, Aldemir E, Akbulut H, Coskunol H, Timur S, Yagci Y (2017) Double fluorescence assay via a β-cyclodextrin containing conjugated polymer as a biomimetic material for cocaine sensing. Polym Chem 8(21):3333–3340

    Article  CAS  Google Scholar 

  13. Bayatloo MR, Salehpour N, Alavi A, Nojavan S (2022) Introduction of maltodextrin nanosponges as green extraction phases: magnetic solid phase extraction of fluoroquinolones. Carbohyd Polym 297:119992

    Article  CAS  Google Scholar 

  14. Majd M, Yazdanpanah M, Bayatloo MR, Nojavan S (2021) Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta 229:122296

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Sun P, Liu D, Zhao Q, Zou B, Zhou L, Ye Z (2021) Method to fabricate porous multifunction β-cyclodextrin modified resin for ultrafast and efficient removal of Cu(II) and bisphenol A. J Taiwan Inst Chem E 119:286–297

    Article  CAS  Google Scholar 

  16. Xu W, Liu X, Cai J, Xue T, Tang K (2022) Synthesis of reusable cyclodextrin polymers for removal of naphthol and naphthylamine from water. Environ Sci Pollut R 29(15):22106–22121

    Article  CAS  Google Scholar 

  17. Tu Y, Xu G, Jiang L, Hu X, Xu J, Xie X, Li A (2020) Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants. Chem Eng J 382:123015

    Article  CAS  Google Scholar 

  18. Sun L, Xu G, Tu Y, Zhang W, Hu X, Yang P, Wu D, Liang Y, Wei D, Li A, Xie X (2022) Multifunctional porous β-cyclodextrin polymer for water purification. Water Res 222:118917

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, Chen G, Li X, Jia Q (2019) Hypercrosslinked β-cyclodextrin porous polymer as adsorbent for effective uptake towards albendazole from aqueous media. Sep Purif Technol 227:115720

    Article  CAS  Google Scholar 

  20. Zhou L, Cai L, Lun J, Zhao M, Guo X (2020) Hydroxypropyl β-cyclodextrin nanohybrid monoliths for use in capillary electrochromatography with UV detection: application to the enantiomeric separation of adrenergic drugs, anticholinergic drugs, antidepressants, azoles, and antihistamine. Microchim Acta 187(7):381

    Article  CAS  Google Scholar 

  21. Fan J, Yi C, Lan X, Yang B (2013) Optimization of synthetic strategy of 4′4″(5″)-Di-tert-butyldibenzo-18-crown-6 using response surface methodology. Org Process Res Dev 17(3):368–374

    Article  CAS  Google Scholar 

  22. Yuan X, Yuan Y, Gao X, Xiong Z, Zhao L (2020) Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals. Food Chem 333:127540

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Liang X, Zheng Y (2012) Simultaneous enantioselective determination of triazole fungicides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Chromatogr A 1224:51–60

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Tian M, Wang M, Shi H, Wang M (2014) Simultaneous enantioselective determination of triazole fungicide flutriafol in vegetables, fruits, wheat, soil, and water by reversed-phase high-performance liquid chromatography. J Agric Food Chem 62(13):2809–2815

    Article  CAS  PubMed  Google Scholar 

  25. Kharbouche L, Gil García MD, Lozano A, Hamaizi H, Galera MM (2019) Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS. Talanta 199:612–619

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Zhu Y, Zhou L, Zhao P, Xiong Z, Yu J (2022) Magnetic solid-phase extraction based on zirconium-based metal–organic frameworks for simultaneous enantiomeric determination of eight chiral pesticides in water and fruit juices. Food Chem 370:131056

    Article  CAS  PubMed  Google Scholar 

  27. Jamshidi F, Nouri N, Sereshti H, Shojaee Aliabadi MH (2020) Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: application for extraction of pesticides. J Mol Liq 318:114073

    Article  CAS  Google Scholar 

  28. Wang Z, Wang X, Li S, Jiang Z, Guo X (2019) Magnetic solid-phase extraction based on carbon nanosphere@Fe3O4 for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 40(9):1306–1313

    Article  CAS  PubMed  Google Scholar 

  29. Seebunrueng K, Tamuang S, Ruangchai S, Sansuk S, Srijaranai S (2021) In situ self-assembled coating of surfactant-mixed metal hydroxide on Fe3O4@SiO2 magnetic composite for dispersive solid phase microextraction prior to HPLC analysis of triazole fungicides. Microchem J 168:106396

    Article  CAS  Google Scholar 

  30. Gao L, Liu L, Sun Y, Zhao W, He L (2020) Fabrication of a novel azamacrocycle-based adsorbent for solid-phase extraction of organophosphorus pesticides in tea drinks. Microchem J 153:104364

    Article  CAS  Google Scholar 

  31. Belenguer-Sapiña C, Sáez-Hernández R, Pellicer-Castell E, Armenta S, Mauri-Aucejo AR (2022) Simultaneous determination of third-generation synthetic cannabinoids in oral fluids using cyclodextrin-silica porous sorbents. Microchem J 172:106915

    Article  Google Scholar 

  32. Belenguer-Sapiña C, Pellicer-Castell E, Pottanam Chali S, Ravoo BJ, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR (2021) Host-guest interactions for extracting antibiotics with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid sorbent. Talanta 232:122478

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82204343), PhD Start-up Foundation of Liaoning Province (2022-BS-343), and scientific research projects for college students of Shenyang Medical College (No. 20239049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghua Fan or Li Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tang, J., Huang, Y. et al. Dispersive solid phase extraction based on cross-linked hydroxypropyl β-cyclodextrin polymers for simultaneous enantiomeric determination of three chiral triazole fungicides in water. Microchim Acta 191, 18 (2024). https://doi.org/10.1007/s00604-023-06091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06091-5

Keywords

Navigation