Skip to main content
Log in

Hydroxypropyl β-cyclodextrin nanohybrid monoliths for use in capillary electrochromatography with UV detection: application to the enantiomeric separation of adrenergic drugs, anticholinergic drugs, antidepressants, azoles, and antihistamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two kinds of hydroxypropyl β-cyclodextrin nanohybrid monoliths were synthesized and applied in capillary electrochromatography with UV detection. One column was fabricated by concurrently using glycidyl methacrylate-bonded hydroxypropyl β-cyclodextrin (GMA-HP-β-CD), sodium 3-mercaptopropanesulphonate, and alkoxysilanes in the “one-pot” process. The other was prepared by free radical polymerization of GMA-HP-β-CD, vinylmethylcyclosiloxane, ethylene dimethacrylate, and 2-acrylamido-2-methyl propane sulfonic acid. Compared to the former hybrid monolith, the latter one displayed improved enantiomeric separation. For ten adrenergic drugs, six anticholinergic drugs, two antidepressants, six azoles, and one antihistamine enantiomeric separation was obtained on the monolith synthesized by free radical polymerization. Twelve out of twenty-five drugs were baseline-separated. Especially, anisodamine with two chiral centers was successfully separated with resolution values of 3.06, 2.11, and 2.17. The nanohybrid monoliths were characterized by optical microscopy, scanning electron microscopy, FT-IR, nitrogen adsorption analysis, and thermogravimetric analysis. Relative standard deviation values less than 5% were obtained through run-to-run, day-to-day, and column-to-column investigations (n = 3).

Schematic representation of two kinds of hydroxypropyl β-cyclodextrin nanohybrid monoliths based on “one-pot” approach (route I) and free radical polymerization approach (route II), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song W, Zhao Q, Zhou X, Zhang L, Huang Y, Liu Z (2018) A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography. Microchim Acta 186(1). https://doi.org/10.1007/s00604-018-3151-5

  2. Sun X, Tao Y, Du Y, Ding W, Chen C, Ma X (2019) Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 186(9):626. https://doi.org/10.1007/s00604-019-3716-y

    Article  CAS  Google Scholar 

  3. Zhao S, Yu T, Du Y, Sun X, Feng Z, Ma X, Ding W, Chen C (2019) An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides. Microchim Acta 186(9):636. https://doi.org/10.1007/s00604-019-3723-z

    Article  CAS  Google Scholar 

  4. Bragg W, Shamsi SA (2012) A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry. J Chromatogr A 1267:144–155. https://doi.org/10.1016/j.chroma.2012.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Song C, Zhang L, Zhang W, Fu H (2010) Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives. Talanta 80(3):1378–1384. https://doi.org/10.1016/j.talanta.2009.09.039

    Article  CAS  PubMed  Google Scholar 

  6. Wu M, Wu R, Zhang Z, Zou H (2011) Preparation and application of organic-silica hybrid monolithic capillary columns. Electrophoresis 32(1):105–115. https://doi.org/10.1002/elps.201000349

    Article  CAS  PubMed  Google Scholar 

  7. Hong T, Chi C, Ji Y (2014) Pepsin-modified chiral monolithic column for affinity capillary electrochromatography. J Sep Sci 37(22):3377–3383. https://doi.org/10.1002/jssc.201400424

    Article  CAS  PubMed  Google Scholar 

  8. Hsieh ML, Li GY, Chau LK, Hon YS (2008) Single-step approach to β-cyclodextrin-bonded silica as monolithic stationary phases for CEC. J Sep Sci 31(10):1819–1827. https://doi.org/10.1002/jssc.200700631

    Article  CAS  PubMed  Google Scholar 

  9. Ou J, Li X, Feng S, Dong J, Dong X, Kong L, Ye M, Zou H (2007) Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography. Anal Chem 79(2):639–646. https://doi.org/10.1021/ac061475x

    Article  CAS  PubMed  Google Scholar 

  10. Ueki Y, Umemura T, Li J, Odake T, Tsunoda K-i (2004) Preparation and application of methacrylate-based cation-exchange monolithic columns for capillary ion chromatography. Anal Chem 76(23):7007–7012. https://doi.org/10.1021/ac040079g

    Article  CAS  PubMed  Google Scholar 

  11. Bai L, Liu H, Liu Y, Zhang X, Yang G, Ma Z (2011) Preparation of a novel hybrid organic–inorganic monolith for the separation of lysozyme by high performance liquid chromatography. J Chromatogr A 1218(1):100–106. https://doi.org/10.1016/j.chroma.2010.10.115

    Article  CAS  PubMed  Google Scholar 

  12. Ou J, Lin H, Zhang Z, Huang G, Dong J, Zou H (2013) Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis 34(1):126–140. https://doi.org/10.1002/elps.201200344

    Article  CAS  PubMed  Google Scholar 

  13. Lin H, Ou J, Zhang Z, Dong J, Zou H (2012) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem Commun 49(3):231–233. https://doi.org/10.1039/C2CC36881A

    Article  Google Scholar 

  14. Wu M, Wu R, Li R, Qin H, Dong J, Zhang Z, Zou H (2010) Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic−organic hybrid monolithic columns. Anal Chem 82(13):5447–5454. https://doi.org/10.1021/ac1003147

    Article  CAS  PubMed  Google Scholar 

  15. Sun X, Du Y, Zhao S, Huang Z, Feng Z (2019) Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles. Microchim Acta 186(2):128. https://doi.org/10.1007/s00604-018-3163-1

    Article  CAS  Google Scholar 

  16. Yang X, Sun X, Feng Z, Du Y, Chen J, Ma X, Li X (2019) Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids. Microchim Acta 186(4):244. https://doi.org/10.1007/s00604-019-3318-8

    Article  CAS  Google Scholar 

  17. Gu C, Shamsi SA (2011) Evaluation of a methacrylate-bonded cyclodextrins as a monolithic chiral stationary phase for capillary electrochromatography (CEC)-UV and CEC coupled to mass spectrometry. Electrophoresis 32(19):2727–2737. https://doi.org/10.1002/elps.201000647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu Y, Shamsi SA (2014) Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: improved chiral separations in capillary electrochromatography. J Chromatogr Sci 9(52):1109–1120. https://doi.org/10.1093/chromsci/bmt148

    Article  CAS  Google Scholar 

  19. Zhang Q, Guo J, Wang F, Crommen J, Jiang Z (2014) Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations. J Chromatogr A 1325:147–154. https://doi.org/10.1016/j.chroma.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  20. Tian Y, Zhong C, Fu E, Zeng Z (2009) Novel β-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. J Chromatogr A 1216(6):1000–1007. https://doi.org/10.1016/j.chroma.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Zhang Q, Peng Y, Liu Z, Rao L, He T, Crommen J, Sun P, Jiang Z (2013) A facile and efficient one-step strategy for the preparation of β-cyclodextrin monoliths. J Sep Sci 36(15):2441–2449. https://doi.org/10.1002/jssc.201300374

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Zhang Q, Yao Z, Zhao X, Ran D, Crommen J, Jiang Z (2014) One-step strategy for the synthesis of a derivatized cyclodextrin-based monolithic column. J Sep Sci 37(14):1720–1727. https://doi.org/10.1002/jssc.201400312

    Article  CAS  PubMed  Google Scholar 

  23. Deng M, Li M, Zhao Y, Jiang Z, Guo X (2018) A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs. Talanta 189:458–466. https://doi.org/10.1016/j.talanta.2018.07.041

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Wu M, Wu R, Dong J, Ou J, Zou H (2011) Preparation of perphenylcarbamoylated β-cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography. Anal Chem 83(9):3616–3622. https://doi.org/10.1021/ac200414r

    Article  CAS  PubMed  Google Scholar 

  25. Szwed K, Ou J, Huang G, Lin H, Liu Z, Wang H, Zou H (2016) Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography. J Sep Sci 39(6):1110–1117. https://doi.org/10.1002/jssc.201501157

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Sun H, Lyu H, Xie Z (2019) Preparation of a polyhedral oligomeric silsesquioxanes hybrid monolith via a single-step ring-opening polymerization for pressurized capillary electrochromatography. Electrophoresis 40(4):530–538. https://doi.org/10.1002/elps.201800458

    Article  CAS  PubMed  Google Scholar 

  27. Deng M, Li S, Cai L, Guo X (2019) Preparation of a hydroxypropyl-β-cyclodextrin functionalized monolithic column by one-pot sequential reaction and its application for capillary electrochromatographic enantiomer separation. J Chromatogr A 1603:269–277. https://doi.org/10.1016/j.chroma.2019.06.044

    Article  CAS  PubMed  Google Scholar 

  28. Pitha J, Milecki J, Fales H, Pannell L, Uekama K (1986) Hydroxypropyl-beta-cyclodextrin: preparation and characterization; effects on solubility of drugs. Int J Pharm 29:73–82. https://doi.org/10.1016/0378-5173(86)90201-2

    Article  CAS  Google Scholar 

  29. Liu Z, Ou J, Lin H, Liu Z, Wang H, Dong J, Zou H (2014) Photoinduced thiol-ene polymerization reaction for fast preparation of macroporous hybrid monoliths and their application in capillary liquid chromatography. Chem Commun 50(66):9288–9290

    Article  CAS  Google Scholar 

  30. Chen ML, Zheng MM, Feng YQ (2010) Preparation of organic–inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage. J Chromatogr A 1217(21):3547–3556. https://doi.org/10.1016/j.chroma.2010.03.032

    Article  CAS  PubMed  Google Scholar 

  31. Saz JM, Marina ML (2016) Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A 1467:79–94. https://doi.org/10.1016/j.chroma.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  32. Lämmerhofer M, Gargano A (2010) Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. J Pharm Biomed Anal 53(5):1091–1123. https://doi.org/10.1016/j.jpba.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  33. Dixit S, Lee IS, Park JH (2017) Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography. J Chromatogr A 1507:132–140. https://doi.org/10.1016/j.chroma.2017.05.046

    Article  CAS  PubMed  Google Scholar 

  34. Khadka S, El Rassi Z (2016) Postpolymerization modification of a hydroxy monolith precursor. Part III. Activation of poly(hydroxyethyl methacrylate-co-pentaerythritol triacrylate) monolith with epoxy functionalities followed by bonding of glycerol, polyamines, and hydroxypropyl-β-cyclodextrin for hydrophilic interaction and chiral capillary electrochromatography. Electrophoresis 37(23–24):3178–3185. https://doi.org/10.1002/elps.201600326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhao or Xingjie Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Cai, L., Lun, J. et al. Hydroxypropyl β-cyclodextrin nanohybrid monoliths for use in capillary electrochromatography with UV detection: application to the enantiomeric separation of adrenergic drugs, anticholinergic drugs, antidepressants, azoles, and antihistamine. Microchim Acta 187, 381 (2020). https://doi.org/10.1007/s00604-020-04317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04317-4

Keywords

Navigation