Skip to main content
Log in

Magnetic MXene–based molecularly imprinted electrochemical sensor for methylmalonic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel magnetic Ti3C2Tx-MXene/Fe3O4 composite was prepared from Ti3C2Tx and magnetic Fe3O4. The characterizations by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) exhibited that the Ti3C2Tx/Fe3O4 nanomaterial presented an outstanding conductivity and a large specific area, which could improve the electron transfer rate, leading to the amplification of the sensor’s signal. Furthermore, an ultrasensitive molecularly imprinted electrochemical sensor based on MXene/Fe3O4 composites was fabricated for detecting methylmalonic acid (MMA) with high selectivity. The current intensity of differential pulse voltammetry of the sensor presented a good linear relationship with the logarithm of MMA concentration ranging from 9 × 10−15 mol L−1 to 9 × 10−13 mol L−1. The detection limit of the sensor was 2.33 × 10−16 mol L−1. The fabricated sensor was utilized for detecting MMA in human serum samples with excellent recoveries. Therefore, this method significantly improved the sensitivity of detection, and constitutes an  affordable sensing platform for trace detection of organic carboxylic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T (2019) Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis 14:84. https://doi.org/10.1186/s13023-019-1063-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hang C, Xu S, Wu Q, Zhang P, Zhang Y, Xu Y (2021) mRNA-based therapies and their clinical prospects. Chin Sci Bull 66:3649–3666. https://doi.org/10.1360/TB-2021-0222

    Article  Google Scholar 

  3. Du N, Chen M, Cui Y, Liu X, Li Y (2022) Fluorescent sensor array constructed by functionalized carbon nanodots for qualitative and quantitative analysis of urinary organic acids biomarkers. Sens Actuators B Chem 350:130825. https://doi.org/10.1016/j.snb.2021.130825

    Article  CAS  Google Scholar 

  4. Cox EV, White AM (1962) Methylmalonic acid excretion: an index of vitamin-B12 deficiency. Lancet 280:853–856. https://doi.org/10.1016/S0140-6736(62)90631-1

    Article  Google Scholar 

  5. Bashir H, Hinterberger H, Jones B (1966) Methylmalonic acid excretion in vitamin B12 deficiency. Br J Haematol 12:704–711. https://doi.org/10.1111/j.1365-2141.1966.tb00156.x

    Article  CAS  PubMed  Google Scholar 

  6. Obeid R, Geisel J, Herrmann W (2015) Comparison of two methods for measuring methylmalonic acid as a marker for vitamin B12 deficiency. Diagnosis 2:67–72. https://doi.org/10.1515/dx-2014-0030

    Article  PubMed  Google Scholar 

  7. Babidge PJ, Babidge WJ (1994) Determination of methylmalonic acid by high-performance liquid chromatography. Anal Biochem 216:424–426. https://doi.org/10.1006/abio.1994.1062

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen TL, Keyes WR, Shahab-Ferdows S, Allen LH, Newman JW (2011) Methylmalonic acid quantification in low serum volumes by UPLC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 879:1502–1506. https://doi.org/10.1016/j.jchromb.2011.03.039

    Article  CAS  Google Scholar 

  9. Deepa JR, Anirudhan TS, Soman G (2020) Electrochemical sensing of methylmalonic acid based on molecularly imprinted polymer modified with graphene oxide and gold nanoparticles. Microchem J 159:105489. https://doi.org/10.1016/j.microc.2020.105489

    Article  CAS  Google Scholar 

  10. Kumar J, Soomro RA, Neiber RR, Ahmed N, Medany SS, Albaqami MD, Nafady A (2022) Ni nanoparticles embedded Ti3C2Tx-MXene nanoarchitectures for electrochemical sensing of methylmalonic acid. Biosensors 12:231. https://doi.org/10.3390/bios12040231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rajeev R, Benny L, Roy M, Mathew AT, Akshaya KB, Varghese A, Hegde G (2022) A facile and economic electrochemical sensor for methylmalonic acid: a potential biomarker for vitamin B12 deficiency. New J Chem 46:4114–4125. https://doi.org/10.1039/D1NJ05544E

    Article  CAS  Google Scholar 

  12. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14:4329–4332. https://doi.org/10.1016/S0040-4039(01)87213-0

    Article  Google Scholar 

  13. Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615. https://doi.org/10.1016/j.bios.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  14. Vidal L, Robin O, Parshintsev J, Mikkola J-P, Riekkola M-L (2013) Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions. J Chromatogr A 1285:7–14. https://doi.org/10.1016/j.chroma.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Duan D, Yang H, Ding Y, Li L, Ma G (2019) A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochim Acta 302:137–144. https://doi.org/10.1016/j.electacta.2019.02.028

    Article  CAS  Google Scholar 

  16. Liu G, Ling J, Li J (2021) Extremely sensitive molecularly imprinted ECL sensor with multiple probes released from liposomes immobilized by a light-triggered click reaction. ACS Sens 6:4185–4192. https://doi.org/10.1021/acssensors.1c01763

    Article  CAS  PubMed  Google Scholar 

  17. Rostamizadeh K, Abdollahi H, Parsajoo C (2013) Synthesis, optimization, and characterization of molecularly imprinted nanoparticles. Int Nano Lett 3:1–9. https://doi.org/10.1186/2228-5326-3-20

    Article  CAS  Google Scholar 

  18. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  19. Shahzada F, Iqbal A, Zaidi SA, Hwang SW, Koo CM (2019) Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. Ind Eng Chem Res 79:338–344. https://doi.org/10.1016/j.jiec.2019.03.061

    Article  CAS  Google Scholar 

  20. Xia T, Liu G, Wang J, Hou S, Hou S (2021) MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol. Biosens Bioelectron 183:113243. https://doi.org/10.1016/j.bios.2021.113243

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Xia T, Wei J, Hou S, Hou S (2022) Ammonia modified MXene/aniline copolymers electrochemical sensors for ultrasensitive sensing glutathione. ChemElectroChem 9:e202200971. https://doi.org/10.1002/celc.202200971

    Article  CAS  Google Scholar 

  22. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10:5906–5913. https://doi.org/10.1039/C8NR00380G

    Article  CAS  PubMed  Google Scholar 

  23. Xie Y, Gao F, Tu X, Ma X, Xu Q, Dai R, Huang X, Yu Y, Lu L (2019) Facile synthesis of MXene/electrochemically reduced graphene oxide composites and their application for electrochemical sensing of carbendazim. J Electrochem Soc 166:B1673–B1680. https://doi.org/10.1149/2.0091916jes

    Article  CAS  Google Scholar 

  24. Wen M, Xing Y, Liu G, Hou S, Hou S (2022) Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for sensing dopamine. Microchim Acta 189:141. https://doi.org/10.1007/s00604-022-05222-8

    Article  CAS  Google Scholar 

  25. Liu G, Xia T, Liang X, Hou S, Hou S (2022) Enzymatic electrochemical biosensor from Eu-doped SnO2 embedded in MXene for high performance sensing lactate. ChemElectroChem 9:e202200848. https://doi.org/10.1002/celc.202200848

    Article  CAS  Google Scholar 

  26. Zhang D, Wang X, He LJ, Song W, Sun Z, Han B, Li J-X, Lei Q-Q (2013) Preparation and characteristic of magnetic LDPE/Fe3O4 nano-composite films. J Mater Sci Mater Electron 24:1796–1800. https://doi.org/10.1007/s10854-012-1014-0

    Article  CAS  Google Scholar 

  27. Wei S, Liu Y, Hua T, Liu L, Wang H (2013) Molecularly imprinted electrochemical sensor for the determination of ampicillin based on a gold nanoparticle and multiwalled carbon nanotube-coated Pt electrode. J Appl Polym Sci 131:40613. https://doi.org/10.1002/app.40613

    Article  CAS  Google Scholar 

  28. Wang Y, Li Y, Qiu Z, Wu X, Zhou P, Zhou T, Zhao J, Miao Z, Zhou J, Zhuo S (2018) Fe3O4@ Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem A 6:11189–11197. https://doi.org/10.1039/c8ta00122g

    Article  CAS  Google Scholar 

  29. Liang Y, Qu C, Yang R, Qu L, Li J (2017) Molecularly imprinted electrochemical sensor for daidzein recognition and detection based on poly(sodium 4-styrenesulfonate) functionalized graphene. Sens Actuators B Chem 251:542–550. https://doi.org/10.1016/j.snb.2017.05.044

    Article  CAS  Google Scholar 

  30. Liu P, Zhang X, Xu W, Guo C, Wang S (2012) Electrochemical sensor for the determination of brucine in human serum based on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film. Sens Actuators B Chem 163:84–89. https://doi.org/10.1016/j.snb.2012.01.011

    Article  CAS  Google Scholar 

  31. Mao H, Song S, Li Y, Zhuo Q, Huo J (2018) Determination of serun methylmalonic acid by ultra-high performance liquid chromatography-tandem mass spectrometry and its application to evaluation of nutritional status of vitamin B12. J Prev Med Chin PLA 36:699–702. https://doi.org/10.13704/j.cnki.jyyx.2018.06.002

    Article  Google Scholar 

  32. Aghamohammadi M, Shahdousti P, Harooni B (2016) Ultrasound-assisted emulsification microextraction followed by gas chromatography–flame ionization detection for urinary methylmalonic acid determination. Microchem J 124:188–194. https://doi.org/10.1016/j.microc.2015.07.028

    Article  CAS  Google Scholar 

  33. Li N, Deng C, Zhang X (2007) Determination of methylmalonic acid and glutaric acid in urine by aqueous-phase derivatization followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Sep Sci 30:266–271. https://doi.org/10.1002/jssc.200600296

    Article  CAS  PubMed  Google Scholar 

  34. Al-Dirbashi OY, Jacob M, Al-Hassnan Z, Chabayta RW, El-Badaoui F, Rashed MS (2006) Determination of methylmalonic acid in urine by HPLC with intramolecular excimer-forming fluorescence derivatization. Biomed Chromatogr 20:54–60. https://doi.org/10.1002/bmc.527

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Science and Technology Base and Talent Special Project (No. 2021AC20002) and Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shili Hou or Shifeng Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Supplementary data. (DOCX 2199 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Ding, X., Liang, X. et al. Magnetic MXene–based molecularly imprinted electrochemical sensor for methylmalonic acid. Microchim Acta 190, 208 (2023). https://doi.org/10.1007/s00604-023-05791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05791-2

Keywords

Navigation