Skip to main content
Log in

Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted electrochemical sensor (MIECS) for trace determination of taurine was developed. The sensor was constructed by electropolymerizing dopamine and o-phenylenediamine as dual monomers on the surface of amino-functionalized iron-based MOFs and graphene composite-modified electrode. The porous structure and large specific surface area of amino-functionalized iron-based MOFs not only increase the number of imprinted sites, but also facilitate the binding of molecularly imprinted films. The presence of dual monomers can increase the binding sites during the formation of imprinted films. The linear range of this sensor for taurine detection is 1.00 × 10−14–1.00 × 10−8 mol L−1 with a determination limit of 3.20 × 10−15 mol L−1. The proposed MIECS was successfully applied to quantify the amount of taurine in human serum sample with good recovery values from 97.3 to 113%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17(5):330–346. https://doi.org/10.1002/dmrr.229

    Article  CAS  PubMed  Google Scholar 

  2. Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23(4):381–393. https://doi.org/10.1007/s00726-002-0212-0

    Article  CAS  PubMed  Google Scholar 

  3. Mas MR, Comert B, Oncu K, Vural SA, Akay C, Tasci I, Ozkomur E, Serdar M, Mas N, Alcigir G, Yener N (2004) The effect of taurine treatment on oxidative stress in experimental liver fibrosis. Hepatol Res 28(4):207–215. https://doi.org/10.1016/j.herpes.2003.11.012

    Article  PubMed  Google Scholar 

  4. De Curtis M, Santamaria F, Ercolini P, Vittoria L, De Ritis G, Garofalo V, Ciccimarra F (1992) Effect of taurine supplementation on fat and energy absorption in cystic fibrosis. Arch Dis Child 67(9):1082. https://doi.org/10.1136/adc.67.9.1082

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kimmel DW, Leblanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707. https://doi.org/10.1021/ac202878q

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien C, Varty K, Ignaszak A (2021) The electrochemical detection of bioterrorism agents: a review of the detection, diagnostics, and implementation of sensors in biosafety programs for class A bioweapons. Microsyst Nanoeng 7(1). https://doi.org/10.1038/s41378-021-00242-5

  7. Chai R, Wang Y, Kan X (2021) Sensitive and selective detection of glycoprotein based on dual-signal and dual-recognition electrochemical sensing platform. Food Chem 340:127944. https://doi.org/10.1016/j.foodchem.2020.127944

    Article  CAS  PubMed  Google Scholar 

  8. Li T, Liao C, An J, Zhou L, Tian L, Zhou Q, Li N, Wang X (2021) A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. Sci Total Environ 766:142646. https://doi.org/10.1016/j.scitotenv.2020.142646

    Article  CAS  PubMed  Google Scholar 

  9. Lee S, Ozlu B, Eom T, Martin DC, Shim BS (2020) Electrically conducting polymers for bio-interfacing electronics: from neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron 170:112620. https://doi.org/10.1016/j.bios.2020.112620

    Article  CAS  PubMed  Google Scholar 

  10. Temocin Z (2021) Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. J Appl Electrochem 51(2):283–293. https://doi.org/10.1007/s10800-020-01502-4

    Article  CAS  Google Scholar 

  11. Uzun L, Turner APF (2016) Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron 76:131–144. https://doi.org/10.1016/j.bios.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  12. Gui R, Jin H, Guo H, Wang Z (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70. https://doi.org/10.1016/j.bios.2017.08.058

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Z, Li G, Zhang M (2016) A novel sensor based on bifunctional monomer molecularly imprinted film at graphene modified glassy carbon electrode for detecting traces of moxifloxacin. RSC Adv 6(39):32915–32921. https://doi.org/10.1039/c6ra01494a

    Article  CAS  Google Scholar 

  14. Zhao W-R, Kang T-F, Lu L-P, Shen F-X, Cheng S-Y (2017) A novel electrochemical sensor based on gold nanoparticles and molecularly imprinted polymer with binary functional monomers for sensitive detection of bisphenol A. J Electroanal Chem 786:102–111. https://doi.org/10.1016/j.jelechem.2017.01.003

    Article  CAS  Google Scholar 

  15. Li J, Huang X, Ma J, Wei S, Zhang H (2020) A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Ionics 26(8):4183–4192. https://doi.org/10.1007/s11581-020-03554-0

    Article  CAS  Google Scholar 

  16. Rawool CR, Srivastava AK (2019) A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid. Sens Actuators, B Chem 288:493–506. https://doi.org/10.1016/j.snb.2019.03.032

    Article  CAS  Google Scholar 

  17. Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Org Electron 12(12):2215–2224. https://doi.org/10.1016/j.orgel.2011.09.012

    Article  CAS  Google Scholar 

  18. Zhou HC, Long JR, Yaghi OM (2012) Special thematic issue on metal organic frameworks. Chem Rev 112(2):673–1268

    Article  CAS  PubMed  Google Scholar 

  19. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41(12):1782–1789. https://doi.org/10.1021/ar800124u

    Article  CAS  PubMed  Google Scholar 

  20. Yin C, Zhuang Q, Xiao Q, Wang Y, Xie J (2021) Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. Anal Methods: Adv Methods Appl 13(9):1154–1163. https://doi.org/10.1039/d1ay00028d

    Article  CAS  Google Scholar 

  21. Guo H, Zhu Y, Qiu S, Lercher AJ, Zhang H (2010) Coordination modulation induced synthesis of nanoscale Eu 1-Tbxmetal-organic frameworks for luminescent thin films. Adv Mater 22(37):4190–4192. https://doi.org/10.1002/adma.201000844

    Article  CAS  PubMed  Google Scholar 

  22. Petit C, Bandosz TJ (2015) Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. J Colloid Interface Sci 447:139–151. https://doi.org/10.1016/j.jcis.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  23. Petit C, Bandosz TJ (2009) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv Mater 21(46):4753–4757. https://doi.org/10.1002/adma.200901581

    Article  CAS  Google Scholar 

  24. Wu X-Q, Feng P-Q, Guo Z, Wei X (2020) Water-Stable 1D Double-chain Cu metal–organic framework-based electrochemical biosensor for detecting l-tyrosine. Langmuir 36(46):14123–14129. https://doi.org/10.1021/acs.langmuir.0c02799

    Article  CAS  PubMed  Google Scholar 

  25. Jiang T, Sun X, Wei L, Li M (2020) Determination of hydrogen peroxide released from cancer cells by a Fe-Organic framework/horseradish peroxidase-modified electrode. Anal Chim Acta 1135:132–141. https://doi.org/10.1016/j.aca.2020.09.040

    Article  CAS  PubMed  Google Scholar 

  26. Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Férey G, Stock N (2008) High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg Chem 47(17):7568–7576. https://doi.org/10.1021/ic800538r

    Article  CAS  PubMed  Google Scholar 

  27. Yi X, He X, Yin F, Yang T, Chen B, Li G (2020) NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte. J Mater Sci 55(26):12041–12052. https://doi.org/10.1007/s10853-020-04777-2

    Article  CAS  Google Scholar 

  28. Li SJ, Hou LL, Chang MZ, Yan JJ, Liu L (2016) A novel enzyme-free hydrogen peroxide sensor based on electrode modified with gold nanoparticles-overoxidized polydopamine composites. Int J Electrochem Sci 11(4):2887–2896. https://doi.org/10.20964/110402887

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Doctoral Research Foundation project of Nanyang Institute of Technology (No. 510195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingding Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 910 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Wang, J., Han, P. et al. Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine. Microchim Acta 190, 162 (2023). https://doi.org/10.1007/s00604-023-05751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05751-w

Keywords

Navigation