Skip to main content
Log in

NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The global NH3 production is dominated by Haber–Bosch process, requiring high temperature and pressure. Electrochemical N2 reduction reaction (NRR) under ambient conditions is a greener path for artificial N2 fixation to NH3 but calling for efficient catalyst to increase activity and selectivity. Herein, we report the iron-based metal–organic frameworks (MOFs), i.e., MIL-88B–Fe and amine-functionalized MIL-88B–Fe (NH2–MIL-88B–Fe) as efficient catalysts for electrochemical NRR under ambient temperature and pressure in neutral electrolyte. NH2–MIL-88B–Fe shows higher NH3 yield rate of 1.205 × 10–10 mol s−1 cm−2 than MIL-88B–Fe (3.575 × 10–11 mol s−1 cm−2). Furthermore, NH2–MIL-88B–Fe exhibits the highest Faradaic efficiency of 12.45% at 0.05 V versus RHE. The control experiments prove that NH3 is produced through electrocatalytic NRR. This work may trigger the interest of using MOFs as highly efficient catalysts for electrochemical NH3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sherbow TJ, Thompson EJ, Arnold A, Sayler RI, Britt RD, Berben LA (2019) Electrochemical reduction of N2 to NH3 at low potential by a molecular aluminum complex. Chem Eur J 25:454–458

    CAS  Google Scholar 

  2. Qin Q, Zhao Y, Schmallegger M, Heil T, Schmidt J, Walczak R, Gescheidt-Demner G, Jiao H, Oschatz M (2019) Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew Chem Int Ed Engl 58:13101–13106

    CAS  Google Scholar 

  3. Ling C, Zhang Y, Li Q, Bai X, Shi L, Wang J (2019) New mechanism for N2 reduction: the essential role of surface hydrogenation. J Am Chem Soc 141:18264–18270

    CAS  Google Scholar 

  4. Luo Y, Chen G-F, Ding L, Chen X, Ding L-X, Wang H (2019) Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3:279–289

    CAS  Google Scholar 

  5. He C, Wu Z-Y, Zhao L, Ming M, Zhang Y, Yi Y, Hu J-S (2019) Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal 9:7311–7317

    CAS  Google Scholar 

  6. Wang XH, Wang J, Li YB, Chu K (2019) Nitrogen-doped NiO nanosheet array for boosted electrocatalytic N2 reduction. ChemCatChem 11:4529–4536

    CAS  Google Scholar 

  7. Xia L, Wu X, Wang Y, Niu Z, Liu Q, Li T, Shi X, Asiri AM, Sun X (2019) S-doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 3:1800251

    Google Scholar 

  8. Li X, Xie H, Mao J (2020) Ag nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. J Mater Sci 55:5203–5210. https://doi.org/10.1007/s10853-020-04371-6

    Article  CAS  Google Scholar 

  9. Tian Y, Xu D, Chu K, Wei Z, Liu W (2019) Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. J Mater Sci 54:9088–9097. https://doi.org/10.1007/s10853-019-03538-0

    Article  CAS  Google Scholar 

  10. Kosaka F, Noda N, Nakamura T, Otomo J (2017) In situ formation of Ru nanoparticles on La1−xSrxTiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte. J Mater Sci 52:2825–2835. https://doi.org/10.1007/s10853-016-0573-5

    Article  CAS  Google Scholar 

  11. Zhu X, Wu T, Ji L, Liu Q, Luo Y, Cui G, Xiang Y, Zhang Y, Zheng B, Sun X (2020) Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation. Chem Commun 56:731–734

    CAS  Google Scholar 

  12. Zhu X, Mou S, Peng Q, Liu Q, Luo Y, Chen G, Gao S, Sun X (2020) Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalyst development and performance improvement. J Mater Chem A 8:1545–1556

    CAS  Google Scholar 

  13. Xia L, Yang J, Wang H, Zhao R, Chen H, Fang W, Asiri AM, Xie F, Cui G, Sun X (2019) Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem Commun 55:3371–3374

    CAS  Google Scholar 

  14. Zhu X, Wu T, Ji L, Li C, Wang T, Wen S, Gao S, Shi X, Luo Y, Peng Q (2019) Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity. J Mater Chem A 7:16117–16121

    CAS  Google Scholar 

  15. Wu T, Zhu X, Xing Z, Mou S, Li C, Qiao Y, Liu Q, Luo Y, Shi X, Zhang Y, Sun X (2019) Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew Chem Int Ed Engl 58:18449–18453

    CAS  Google Scholar 

  16. Cui X, Tang C, Liu XM, Wang C, Ma W, Zhang Q (2018) Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem Eur J 24:18494–18501

    CAS  Google Scholar 

  17. Liu Y, Su Y, Quan X, Fan X, Chen S, Yu H, Zhao H, Zhang Y, Zhao J (2018) Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal 8:1186–1191

    CAS  Google Scholar 

  18. Singh AR, Montoya JH, Rohr BA, Tsai C, Vojvodic A, Nørskov JK (2018) Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal 8:4017–4024

    CAS  Google Scholar 

  19. Singh AR, Rohr BA, Statt MJ, Schwalbe JA, Cargnello M, Nørskov JK (2019) Strategies toward selective electrochemical ammonia synthesis. ACS Catal 9:8316–8324

    CAS  Google Scholar 

  20. Wu T, Kong W, Zhang Y, Xing Z, Zhao J, Wang T, Shi X, Luo Y, Sun X (2019) Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small methods 3:1900356

    CAS  Google Scholar 

  21. Li C, Mou S, Zhu X, Wang F, Wang Y, Qiao Y, Shi X, Luo Y, Zheng B, Li Q (2019) Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem Commun 55:14474–14477

    CAS  Google Scholar 

  22. Zhang R, Ji L, Kong W, Wang H, Zhao R, Chen H, Li T, Li B, Luo Y, Sun X (2019) Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chem Commun 55:5263–5266

    CAS  Google Scholar 

  23. Wei P, Xie H, Zhu X, Zhao R, Ji L, Tong X, Luo Y, Cui G, Wang Z, Sun X (2019) CoS2 Nanoparticles-embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N2-to-NH3 fixation under ambient conditions, ACS Sustain. Chem Eng 8:29–33

    Google Scholar 

  24. Zhu X, Zhao J, Ji L, Wu T, Wang T, Gao S, Alshehri AA, Alzahrani KA, Luo Y, Xiang Y (2020) FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res 13:209–214

    CAS  Google Scholar 

  25. Xiong W, Cheng X, Wang T, Luo Y, Feng J, Lu S, Asiri AM, Li W, Jiang Z, Sun X (2020) Co3(hexahydroxytriphenylene)2: a conductive metal—organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res 13:1008–1012

    CAS  Google Scholar 

  26. Zhang R, Han J, Zheng B, Shi X, Asiri AM, Sun X (2019) Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions. Inorg Chem Front 6:391–395

    CAS  Google Scholar 

  27. Zhao X, Yin F, Liu N, Li G, Fan T, Chen B (2017) Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J Mater Sci 52:10175–10185. https://doi.org/10.1007/s10853-017-1176-5

    Article  CAS  Google Scholar 

  28. Ma M, Betard AI, Weber I, Al-Hokbany NS, Fischer RA, Metzler-Nolte N (2013) Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-induced lattice “breathing”. Cryst Growth Des 13:2286–2291

    CAS  Google Scholar 

  29. Horcajada P, Salles F, Wuttke S, Devic T, Heurtaux D, Maurin G, Vimont A, Daturi M, David O, Magnier E (2011) How linker’s modification controls swelling properties of highly flexible iron (III) dicarboxylates MIL-88. J Am Chem Soc 133:17839–17847

    CAS  Google Scholar 

  30. Schild DJ, Peters JC (2019) Light enhanced Fe-mediated nitrogen fixation: mechanistic insights regarding H2 elimination, HER, and NH3 generation. ACS Catal 9:4286–4295

    CAS  Google Scholar 

  31. Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Ferey G, Stock N (2008) High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. Inorg Chem 47:7568–7576

    CAS  Google Scholar 

  32. State Environmental Protection Administration of China (2002) Monitoring and analysis methods of water and wastewater, 4th edn. Press, Beijing, China Environ. Sci

    Google Scholar 

  33. Watt GW, Chrisp JD (1952) Spectrophotometric method for determination of hydrazine. Anal Chem 24:2006–2008

    CAS  Google Scholar 

  34. Ruland W, Tompa H (1968) The effect of preferred orientation on the intensity distribution of (hk) interferences. Acta Crystallogr Sect A Cryst Phys Diffract Theor General Crystallogr 24:93–99

    CAS  Google Scholar 

  35. Shekhah O, Wang H, Zacher D, Fischer RA, Wöll C (2009) Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed 48:5038–5041

    CAS  Google Scholar 

  36. Hou S, Wu YN, Feng L, Chen W, Wang Y, Morlay C, Li F (2018) Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water. Dalton Trans 47:2222–2231

    CAS  Google Scholar 

  37. Li Y, Jiang J, Fang Y, Cao Z, Chen D, Li N, Xu Q, Lu J (2018) TiO2 Nanoparticles anchored onto the metal-organic framework NH2-MIL-88B (Fe) as an adsorptive photocatalyst with enhanced fenton-like degradation of organic pollutants under visible light irradiation, ACS sustain. Chem Eng 6:16186–16197

    CAS  Google Scholar 

  38. Kaspar P, Sobola D, Dallaev R, Ramazanov S, Nebojsa A, Rezaee S, Grmela L (2019) Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl Surf Sci 493:673–678

    CAS  Google Scholar 

  39. Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X (2012) Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commun 48:11656–11658

    CAS  Google Scholar 

  40. Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J (2015) An amine-functionalized iron (III) metal-organic framework as efficient visible-light photocatalyst for Cr (VI) reduction. Adv Sci 2:1500006

    Google Scholar 

  41. Zhao H, Zhang D, Wang Z, Han Y, Sun X, Li H, Xueke W, Pan Y, Qin Y, Lin S (2019) High-performance nitrogen electroreduction at low overpotential by introducing Pb to Pd nanosponges. Appl Catal B 265:118481

    Google Scholar 

  42. Nazemi M, Panikkanvalappil SR, El-Sayed MA (2018) Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 49:316–323

    CAS  Google Scholar 

  43. Nazemi M, El-Sayed MA (2018) Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties. J Phys Chem Lett 9:5160–5166

    CAS  Google Scholar 

  44. Manjunatha R, Schechter A (2018) Electrochemical synthesis of ammonia using ruthenium-platinum alloy at ambient pressure and low temperature. Electrochem Commun 90:96–100

    CAS  Google Scholar 

  45. Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J (2017) Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Appl Catal B 202:653–663

    CAS  Google Scholar 

  46. Lei ZD, Xue YC, Chen WQ, Li L, Qiu WH, Zhang Y, Tang L (2018) The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B (Fe) and the photocatalytic activities. Small 14:1802045

    Google Scholar 

  47. Zhang Y, Du H, Ma Y, Ji L, Guo H, Tian Z, Chen H, Huang H, Cui G, Asiri AM (2019) Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res 12:919–924

    CAS  Google Scholar 

  48. Taha AA, Huang L, Ramakrishna S, Liu Y (2020) MOF [NH2-MIL-101 (Fe)] as a powerful and reusable Fenton-like catalyst. J Water Process Eng 33:101004

    Google Scholar 

  49. Dao XY, Guo JH, Wei YP, Guo F, Liu Y, Sun WY (2019) Solvent-Free Photoreduction of CO2 to CO Catalyzed by Fe-MOFs with superior selectivity. Inorg Chem 58:8517–8524

    CAS  Google Scholar 

  50. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072

    CAS  Google Scholar 

  51. Wang C, van der Vliet D, Chang K-C, You H, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113:19365–19368

    CAS  Google Scholar 

  52. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34:2366–2388

    CAS  Google Scholar 

  53. Pham M-H, Vuong G-T, Vu A-T, Do T-O (2011) Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 27:15261–15267

    CAS  Google Scholar 

  54. Xu B, Xia L, Zhou F, Zhao R, Chen H, Wang T, Zhou Q, Liu Q, Cui G, Xiong X (2019) Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustain Chem Eng 7:2889–2893

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21706010), the Natural Science Foundation of Jiangsu Province of China (BK20161200). Special thanks to the support from Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University (ACGM2016-06-02 and ACGM2016-06-03), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education (ARES-2018-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., He, X., Yin, F. et al. NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte. J Mater Sci 55, 12041–12052 (2020). https://doi.org/10.1007/s10853-020-04777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04777-2

Navigation