Skip to main content
Log in

High-performance colorimetric immunoassay for determination of chloramphenicol using metal–organic framework-based hybrid composites with increased peroxidase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) as carriers for high-capacity loading of HRP-IgG and gold nanoparticles are introduced, to prepare MOF hybrids with enhanced peroxidase activity. The prepared MOF hybrids were employed to establish an indirect competitive colorimetric immunoassay for chloramphenicol (CAP) detection, in which the limit of detection for CAP is 0.006 μg·L−1, only one-fifth of that of the conventional ELISA using the same antibodies and antigens. The linear range was 0.008–0.108 μg·L−1, and the recovery of spiked milk samples varied in the range 76.0–106.0% through three independent experiments. Our proposed colorimetric immunoassay using the MOF hybrid immunoprobe provides a novel platform for ultra-sensitive determination of CAP residues, and it also could be used as a signal amplification model for the high-performance colorimetric immunoassay in food safety monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tao XQ, Jiang HY, Yu XZ, Zhu JH, Wang X, Wang ZH, Shen JZ (2013) Simultaneous determination of chloramphenicol, florfenicol and florfenicol amine in ham sausage with a hybrid chemiluminescent immunoassay. Food Addit Contam Part a-Chem Anal Control Expo Risk Assess 30(5):804–812. https://doi.org/10.1080/19440049.2013.781685

    Article  CAS  Google Scholar 

  2. Tao XQ, Jiang HY, Zhu JH, Wang X, Wang ZH, Niu LL, Shen JZ (2014) An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle. Food Hydrocoll 25(1):137–148. https://doi.org/10.1080/09540105.2012.753513

    Article  CAS  Google Scholar 

  3. Tao XQ, Wang J, Xie YJ, Zuo XW, Mo F, Zhou S, Li HJ (2017) Dual-label chemiluminescence strategy for multiplexed immunoassay of 20 fluoroquinolones, 15 beta-lactams, 15 sulfonamides, and cap in milk. Food Anal Methods 10(9):3009–3022. https://doi.org/10.1007/s12161-017-0865-7

    Article  Google Scholar 

  4. Shrivastav TG, Chaube SK, Charu RK, Kariya KP, Singh R, Nagendra A (2010) Enzyme linked immunosorbent assay for milk progesterone. J Immunoassay Immunochem 31(4):301–313. https://doi.org/10.1080/15321819.2010.528734

    Article  CAS  Google Scholar 

  5. Xu W, Tian J, Luo Y, Zhu L, Huang K (2017) A rapid and visual turn-off sensor for detecting copper (II) ion based on DNAzyme coupled with HCR-based HRP concatemers. Sci Rep 7(1):1–10. https://doi.org/10.1038/srep43362

    Article  Google Scholar 

  6. Liang S, Wu XL, Xiong J, Zong MH, Lou WY (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149. https://doi.org/10.1016/j.ccr.2019.213149

    Article  CAS  Google Scholar 

  7. Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA (2018) Metal-organic framework nanoparticles. Adv Mater 30(37):e1800202. https://doi.org/10.1002/adma.201800202

    Article  CAS  Google Scholar 

  8. Wei J, Zhang D, Zhang L, Ouyang H, Fu Z (2019) Alkaline hydrolysis behavior of metal-organic frameworks NH2-MIL-53(Al) employed for sensitive immunoassay via releasing fluorescent molecules. ACS Appl Mater Interfaces 11(39):35597–35603. https://doi.org/10.1021/acsami.9b13907

    Article  CAS  Google Scholar 

  9. Banerjee S, Lollar CT, Xiao ZF, Fang Y, Zhou HC (2020) Biomedical integration of metal-organic frameworks. Trends Chem 2(5):467–479. https://doi.org/10.1016/j.trechm.2020.01.007

    Article  CAS  Google Scholar 

  10. Wang C, Liu X, Keser Demir N, Chen JP, Li K (2016) Applications of water stable metal-organic frameworks. Chem Soc Rev 45(18):5107–5134. https://doi.org/10.1039/c6cs00362a

    Article  CAS  Google Scholar 

  11. Cai W, Wang JQ, Chu CC, Chen W, Wu CS, Liu G (2019) Metal organic framework-based stimuli-responsive systems for drug delivery. Advanced Science 6(1):1801526. https://doi.org/10.1002/advs.201801526

    Article  CAS  Google Scholar 

  12. Zhang L, Fan C, Liu M, Liu F, Bian S, Du S, Wang H (2018) Biominerized gold-Hemin@ MOF composites with peroxidase-like and gold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA and gold-catalytic silver staining. Sens Actuators, B Chem 266:543–552. https://doi.org/10.1016/j.snb.2018.03.153

    Article  CAS  Google Scholar 

  13. Wang X, Yun Y, Sun W, Lu Z, Tao XQ (2022) A high-performance fluorescence immunoassay based on pyrophosphate-induced MOFs NH2-MIL-88B (Fe) hydrolysis for chloramphenicol detection. Sens Actuators, B Chem 353:131143. https://doi.org/10.1016/j.snb.2021.131143

    Article  CAS  Google Scholar 

  14. Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y (2021) Emerging nanolabels-based immunoassays: principle and applications in food safety. TrAC, Trends Anal Chem 145:116462. https://doi.org/10.1016/j.trac.2021.116462

    Article  CAS  Google Scholar 

  15. Li S, Xie H, Xie F, Yi Q, Tan H (2022) Immunoassay based on urease-encapsulated metal–organic framework for sensitive detection of foodborne pathogen with pH meter as a readout. Microchim Acta 189(9):1–9. https://doi.org/10.1007/s00604-022-05462-8

    Article  CAS  Google Scholar 

  16. Liu Z, Wang X, Dong F, Li Y, Guo Y, Liu X, Zheng Y (2021) Ultrasensitive immunoassay for detection of zearalenone in agro-products using enzyme and antibody co-embedded zeolitic imidazolate framework as labels. J Hazard Mater 412:125276. https://doi.org/10.1016/j.jhazmat.2021.125276

    Article  CAS  Google Scholar 

  17. Qileng A, Liu T, Wang J, Yin T, Shen H, He L, Liu Y (2022) Self-triggered fluorescent metal-organic framework mimic enzyme for competitive immunoassay of hypoglycemic drug in functional tea. Colloids Surf, B 215:112527. https://doi.org/10.1016/j.colsurfb.2022.112527

    Article  CAS  Google Scholar 

  18. Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC, Trends Anal Chem 105:391–403. https://doi.org/10.1016/j.trac.2018.06.001

    Article  CAS  Google Scholar 

  19. Dong W, Yang L, Huang Y (2017) Glycine post-synthetic modification of MIL-53(Fe) metal–organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing. Talanta 167:359–366. https://doi.org/10.1016/j.talanta.2017.02.039

    Article  CAS  Google Scholar 

  20. Gao CJ, Zhu HM, Chen J, Qiu HD (2017) Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett 28(5):1006–1012. https://doi.org/10.1016/j.cclet.2017.02.011

    Article  CAS  Google Scholar 

  21. Zhao C, Jiang ZW, Mu RZ, Li YF (2016) A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system. Talanta 159:365–370. https://doi.org/10.1016/j.talanta.2016.06.043

    Article  CAS  Google Scholar 

  22. Wang Y, Zhu YJ, Binyam A, Liu MS, Wu YN, Li FT (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438. https://doi.org/10.1016/j.bios.2016.06.036

    Article  CAS  Google Scholar 

  23. Li J, Yu C, Wu YN, Zhu Y, Xu J, Wang Y, Li F (2019) Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification. Environ Int 125:135–141. https://doi.org/10.1016/j.envint.2019.01.033

    Article  CAS  Google Scholar 

  24. Wang CH, Gao J, Tan HL (2018) Integrated antibody with catalytic metal-organic framework for colorimetric immunoassay. ACS Appl Mater Interfaces 10(30):25113–25120. https://doi.org/10.1021/acsami.8b07225

    Article  CAS  Google Scholar 

  25. Luan Q, Gan N, Cao Y, Li T (2017) Mimicking an enzyme-based colorimetric aptasensor for antibiotic residue detection in milk combining magnetic loop-DNA probes and CHA-assisted target recycling amplification. J Agric Food Chem 65(28):5731–5740. https://doi.org/10.1021/acs.jafc.7b02139

    Article  CAS  Google Scholar 

  26. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9(2):172–178. https://doi.org/10.1038/nmat2608

    Article  CAS  Google Scholar 

  27. Li XH, Guo WL, Liu ZH, Wang RQ, Liu H (2016) Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl Surf Sci 369:130–136. https://doi.org/10.1016/j.apsusc.2016.02.037

    Article  CAS  Google Scholar 

  28. Chen NY, Liu HY, Zhang YJ, Zhou ZW, Fan WP, Yu GC, Wu AG (2018) A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens Actuators B-Chem 255:3093–3101. https://doi.org/10.1016/j.snb.2017.09.134

    Article  CAS  Google Scholar 

  29. Li YL, Leng YM, Zhang YJ, Li TH, Shen ZY, Wu AG (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sens Actuators B-Chem 200:140–146. https://doi.org/10.1016/j.snb.2014.04.039

    Article  CAS  Google Scholar 

  30. Luo Z, Wang Y, Lu X, Chen J, Wei F, Huang Z, Duan Y (2017) Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal Chim Acta 984:177–184. https://doi.org/10.1016/j.aca.2017.06.037

    Article  CAS  Google Scholar 

  31. Liu YL, Fu WL, Li CM, Huang CZ, Li YF (2015) Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal Chim Acta 861:55–61. https://doi.org/10.1016/j.aca.2014.12.032

    Article  CAS  Google Scholar 

  32. Dong YN, Hu TD, Pudukudy M, Su HY, Jiang LH, Shan SY, Jia QM (2020) Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater Chem Phys 251:123060. https://doi.org/10.1016/j.matchemphys.2020.123060

    Article  CAS  Google Scholar 

  33. Xing YY, Si HZ, Sun DH, Hou XH (2020) Magnetic Fe3O4@NH2-MIL-101(Fe) nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Microchemical Journal, 156. https://doi.org/10.1016/j.microc.2020.104929

  34. Zhang YQ, Chang XX, Wang X, Tao XQ (2019) A quadruple-labeling luminescence strategy for multiplexed immunoassay of 51 drugs in milk with an automated pretreatment system. Anal Methods 11(39):5055–5063. https://doi.org/10.1039/c9ay01632e

    Article  CAS  Google Scholar 

  35. Wang X, Wu X, Lu Z, Tao X (2020) Comparative study of time-resolved fluorescent nanobeads, quantum dot nanobeads and quantum dots as labels in fluorescence immunochromatography for detection of aflatoxin B1 in grains. Biomolecules 10(4):575. https://doi.org/10.3390/biom10040575

    Article  CAS  Google Scholar 

  36. Zhao C, Si Y, Pan B, Taha AY, Pan T, Sun G (2020) Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta 217:121054. https://doi.org/10.1016/j.talanta.2020.121054

    Article  CAS  Google Scholar 

  37. Miao YB, Gan N, Li TH, Zhang HR, Cao YT, Jiang QL (2015) A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification. Sensors and Actuators B-Chemical 220:679–687. https://doi.org/10.1016/j.snb.2015.05.106

    Article  CAS  Google Scholar 

  38. Gao HJ, Pan DD, Gan N, Cao JX, Sun YY, Wu Z, Zeng XQ (2015) An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Microchim Acta 182(15):2551–2559. https://doi.org/10.1007/s00604-015-1632-3

    Article  CAS  Google Scholar 

  39. Zhang DD, Tao XQ, Jiang HY, Wen K, Shen JZ, Cao XY (2014) Simultaneous detection of forbidden chemical residues in milk using dual-label time-resolved reverse competitive chemiluminescent immunoassay based on amine group functionalized surface. Plos One 9(10):109509. https://doi.org/10.1371/journal.pone.0109509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by funding from the National Natural Science Foundation of China (31672605), Natural Science Foundation of Chongqing, China, grant number (cstc2019jcyj-msxmX0314, cstc2018jcyjAX0242), Zhejiang Natural Science Foundation, grant number (LGN18C200026), and The innovation platform for Academicians of Hainan Province.

Author information

Authors and Affiliations

Authors

Contributions

Xin Wang: experiment, writing original draft. Wei Sun: software, data curation. Sudan Ye: software, data curation. Zhisong Lu: methodology, conceptualization; funding acquisition, review, supervision. Xiaoqi Tao: conceptualization; review & editing, funding acquisition, supervision.

Corresponding authors

Correspondence to Zhisong Lu or Xiaoqi Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17521 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lu, Z., Sun, W. et al. High-performance colorimetric immunoassay for determination of chloramphenicol using metal–organic framework-based hybrid composites with increased peroxidase activity. Microchim Acta 189, 484 (2022). https://doi.org/10.1007/s00604-022-05586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05586-x

Keywords

Navigation