Skip to main content
Log in

Immunoassay based on urease-encapsulated metal–organic framework for sensitive detection of foodborne pathogen with pH meter as a readout

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The potential of enzyme-encapsulated metal–organic framework (MOF) as an antibody label for the construction of enzyme-linked immunosorbent assay (ELISA) is demonstrated. Zeolitic imidazolate framework-90 (ZIF-90) was employed as a MOF model to load urease and pig immunoglobulin G (IgG) antibody. This leads to the production of U@ZIF-90/IgG composite, in which urease was encapsulated in ZIF-90 to form U@ZIF-90 for amplifying the detection signal, while IgG was anchored on the surface of U@ZIF-90 for specifically recognizing Staphylococcus aureus (S. aureus). Benefiting from the unique porous structure of ZIF-90, the U@ZIF-90 not only allows urease to be encapsulated with an ultrahigh loading efficiency, but also shields the loaded urease against harsh environments. The U@ZIF-90 shows a threefold higher catalytic activity than free urease due to the confinement effect. These findings lead to an ELISA with greatly enhanced sensitivity for S. aureus detection. By using a portable pH meter as a readout, the ELISA has a linear response that covers 10 to 109 CFU/mL S. aureus with a detection limit of 1.96 CFU/mL and exhibits high selectivity over other bacteria. The successful determination of S. aureus in milk samples demonstrates the applicability of the ELISA in a complex biological matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hermann CA, Duerkop A, Baeumner AJ (2019) Food safety analysis enabled through biological and synthetic materials: a critical review of current trends. Anal Chem 91:569–587

    Article  CAS  Google Scholar 

  2. Zhu H, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541–2544

    Article  CAS  Google Scholar 

  3. Krishna VD, Wu K, Su D, Cheeran MCJ, Wang J-P, Perez A (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54

    Article  CAS  Google Scholar 

  4. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM (2017) Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 46:1272–1283

    Article  CAS  Google Scholar 

  5. Torun Ö, Hakkı Boyacı İ, Temür E, Tamer U (2012) Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosens Bioelectron 37:53–60

    Article  CAS  Google Scholar 

  6. Su Y-l, Li J-r, Jiang L, Cao J (2005) Biosensor signal amplification of vesicles functionalized with glycolipid for colorimetric detection of Escherichia coli. J Colloid Interface Sci 284:114–119

    Article  CAS  Google Scholar 

  7. Silbert L, Shlush IB, Israel E, Porgador A, Kolusheva S, Jelinek R (2006) Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl Environ Microb 72:7339–7344

    Article  CAS  Google Scholar 

  8. Yoo SM, Kim D-K, Lee SY (2015) Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 132:112–117

    Article  CAS  Google Scholar 

  9. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  10. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  Google Scholar 

  11. Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q (2021) Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat. J Agric Food Chem 69:9947–9956

    Article  CAS  Google Scholar 

  12. Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059

    Article  CAS  Google Scholar 

  13. Jiang Y, Su Z, Zhang J, Cai M, Wu L (2018) A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. Analyst 143:5271–5277

    Article  CAS  Google Scholar 

  14. Lin C, Guo Y, Zhao M, Sun M, Luo F, Guo L, Qiu B, Lin Z, Chen G (2017) Highly sensitive colorimetric immunosensor for influenza virus H5N1 based on enzyme-encapsulated liposome. Anal Chim Acta 963:112–118

    Article  CAS  Google Scholar 

  15. Piao Y, Lee D, Kim J, Kim J, Hyeon T, Kim H-S (2009) High performance immunoassay using immobilized enzyme in nanoporous carbon. Analyst 134:926–932

    Article  CAS  Google Scholar 

  16. Chen Y, Li P, Modica JA, Drout RJ, Farha OK (2018) Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc 140:5678–5681

  17. Wang H-S (2017) Metal–organic frameworks for biosensing and bioimaging applications. Coord Chem Rev 349:139–155

    Article  CAS  Google Scholar 

  18. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater 30:1707365

    Article  Google Scholar 

  19. Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  20. Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak WJ (2017) Positioning metal-organic framework nanoparticles within the context of drug delivery - a comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 123:172–183

    Article  CAS  Google Scholar 

  21. Gkaniatsou E, Sicard C, Ricoux R, Mahy J-P, Steunou N, Serre C (2017) Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater Horiz 4:55–63

    Article  CAS  Google Scholar 

  22. Huang S, Kou X, Shen J, Chen G, Ouyang G (2020) Armoring the enzymes with metal-organic frameworks. Angew Chem Int Ed 59:8786–8798

    Article  CAS  Google Scholar 

  23. Lian X, Fang Y, Joseph E, Wang Q, Li J, Banerjee S, Lollar C, Wang X, Zhou H-C (2017) Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 46:3386–3401

    Article  CAS  Google Scholar 

  24. Li P, Moon S-Y, Guelta MA, Harvey SP, Hupp JT, Farha OK (2016) Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. J Am Chem Soc 138:8052–8055

    Article  CAS  Google Scholar 

  25. Li Z, Zhang Y, Su Y, Ouyang P, Ge J, Liu Z (2014) Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem Commun 50:12465–12468

    Article  CAS  Google Scholar 

  26. Liao F-S, Lo W-S, Hsu Y-S, Wu C-C, Wang S-C, Shieh F-K, Morabito JV, Chou L-Y, Wu KCW, Tsung C-K (2017) Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. J Am Chem Soc 139:6530–6533

    Article  CAS  Google Scholar 

  27. Weng Y, Song Z, Chen C-H, Tan H (2021) Hybrid hydrogel reactor with metal-organic framework for biomimetic cascade catalysis. Chem Eng J 425:131482

    Article  CAS  Google Scholar 

  28. Cheng X, Zheng Z, Zhou X, Kuang Q (2020) Metal-organic framework as a compartmentalized integrated nanozyme reactor to enable high-performance cascade reactions for glucose detection. ACS Sustain Chem Eng 8:17783–17790

    Article  CAS  Google Scholar 

  29. Weng Y, Zhu Q, Huang Z-Z, Tan H (2020) Time-resolved fluorescence detection of superoxide anions based on an enzyme-integrated lanthanide coordination polymer composite. ACS Appl Mater Interfaces 12:30882–30889

    Article  CAS  Google Scholar 

  30. Liu G, Wang L, Zhu F, Liu Q, Feng Y, Zhao X, Chen M, Chen X (2022) Facile construction of a reusable multi-enzyme cascade bioreactor for effective fluorescence discrimination and quantitation of amino acid enantiomers. Chem Eng J 428:131975

  31. Nishiyabu R, Hashimoto N, Cho T, Watanabe K, Yasunaga T, Endo A, Kaneko K, Niidome T, Murata M, Adachi C, Katayama Y, Hashizume M, Kimizuka N (2009) Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J Am Chem Soc 131:2151–2158

    Article  CAS  Google Scholar 

  32. Chang F-P, Hung Y, Chang J-H, Lin C-H, Mou C-Y (2014) Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl Mater Interfaces 6:6883–6890

    Article  CAS  Google Scholar 

  33. Chen W-H, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I (2018) Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat Catal 1:689–695

    Article  CAS  Google Scholar 

  34. Gao J, Wang C, Wang J, Tan H (2019) Cascade amplified time-resolved fluorescent assay driven by enzyme-integrated catalytic compartment as an artificial multi-enzyme complex. Chem Eur J 25:9629–9633

    Article  CAS  Google Scholar 

  35. Chen S-Y, Lo W-S, Huang Y-D, Si X, Liao F-S, Lin S-W, Williams BP, Sun T-Q, Lin H-W, An Y, Sun T, Ma Y, Yang H-C, Chou L-Y, Shieh F-K, Tsung C-K (2020) Probing interactions between metal-organic frameworks and freestanding enzymes in a hollow structure. Nano Lett 20:6630–6635

    Article  CAS  Google Scholar 

  36. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    Article  CAS  Google Scholar 

  37. Zhang F-M, Dong H, Zhang X, Sun X-J, Liu M, Yang D-D, Liu X, Wei J-Z (2017) Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl Mater Interfaces 9:27332–27337

    Article  CAS  Google Scholar 

  38. Zhang J, Lan T, Lu Y (2020) Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. TrAC-Trends Anal Chem 124:115782

    Article  CAS  Google Scholar 

  39. Kong W, Xiong J, Yue H, Fu Z (2015) Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy. Anal Chem 87:9864–9868

    Article  CAS  Google Scholar 

  40. Cheng D, Yu M, Fu F, Han W, Li G, Xie J, Song Y, Swihart MT, Song E (2016) Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal Chem 88:820–825

    Article  CAS  Google Scholar 

  41. Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L (2022) Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 195:113661

    Article  CAS  Google Scholar 

  42. Wang Z, Chen Z, Gao N, Ren J, Qu X (2015) Transmutation of personal glucose meters into portable and highly sensitive microbial pathogen detection platform. Small 11:4970–4975

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22064011), the Scientific and Technological Innovation Talent Plan of Hunan Province (2021RC1015), and the Natural Science Foundation of Jiangxi Province (20202ACB205003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghua Li or Hongliang Tan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3326 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xie, H., Xie, F. et al. Immunoassay based on urease-encapsulated metal–organic framework for sensitive detection of foodborne pathogen with pH meter as a readout. Microchim Acta 189, 358 (2022). https://doi.org/10.1007/s00604-022-05462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05462-8

Keywords

Navigation