Skip to main content
Log in

Highly sensitive competitive electrochemiluminescence immunosensor based on ABEI-H2O2 system with cobalt hydroxide nanosheets and bimetal PdAg as co-enhancer for detection of florfenicol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A competitive electrochemiluminescence immunoassay was established based on the isoluminol-H2O2 (ABEI-H2O2) system catalyzed by cobalt hydroxide (Co(OH)2) to detect florfenicol residues in food. First , ultra-thin two-dimensional Co(OH)2 nanosheets were used as the catalyst of ABEI-H2O2 system, and excellent catalytic effects were acquired by catalytic decomposition of hydrogen peroxide with cobalt ions. Then, bimetal PdAg (Pd/Ag) alloy nanoparticles were used as a bridge to connect ABEI and antibody due to their good biocompatibility; Pd/Ag alloy nanoparticles also had a catalytic effect to further amplify the ECL signal in the system due to the synergistic catalytic effect of the bimetal. A competitive immunoassay strategy was used to detect florfenicol, where the florfenicol in the sample will compete with the antibody for the limited binding sites on the coating antigen. The ECL immunosensor for florfenicol detection shows high sensitivity, with a linear range from 10−4  to 102 ng mL−1, and a detection limit of 3.1 × 10−5 ng mL−1, where the scan potential was varied from 0 to 0.6 V vs Ag/AgCl . This work was the first to use Co(OH)2 nanosheets and bimetal PdAg catalytic signal amplification methods to design the sensor, which provides a novel, convenient and reliable strategy for ultra-sensitive detection of florfenicol, and other biological small molecules.

Graphical abstract

A novel ECL immunosensor based on ABEI-H2O22

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142

    Article  CAS  Google Scholar 

  2. Dong Y, Zhou Y, Wang J, Zhu J (2016) Electrogenerated chemiluminescence resonance energy transfer between lucigenin and CdSe quantum dots in the presence of bromide and its sensing application. Sensor Actuators B-Chem 226:444–449

    Article  CAS  Google Scholar 

  3. Fu Y, Ma Q (2020) Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale 12:13879–13898

    Article  CAS  Google Scholar 

  4. Wang Z, Pan J, Li Q, Zhou Y, Yang S, Xu J, Hua D (2020) Improved AIE-active probe with high sensitivity for accurate uranyl ion monitoring in the wild using portable electrochemiluminescence system for environmental applications. Adv Funct Mater 30:2000220. https://doi.org/10.1002/adfm.202000220

    Article  CAS  Google Scholar 

  5. Hao N, Wang K (2016) Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 408:7035–7048

    Article  CAS  Google Scholar 

  6. Zhang A, Miao C, Shi H, Xiang H, Huang C, Jia N (2016) A novel solid-state electrochemiluminescence sensor for atropine determination based on Ru(bpy)32+/carbon nanospheres/Nafion composite film. Sensor Actuators B-Chem 222:433–439

    Article  CAS  Google Scholar 

  7. Zhang M, Peh J, Hergenrother P, Cunningham B (2014) Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor. J Am Chem Soc 136:5840–5843

    Article  CAS  Google Scholar 

  8. Zang R, He Y, Yuan R, Chai Y (2016) An ultrasensitive electrochemiluminescence immunosensor based on zeolitic imidazolate frameworks encapsulating spherical graphite crystals. Electroanal Chem 781:284–288

    Article  CAS  Google Scholar 

  9. Yang H, Wang H, Xiong C, Chai Y, Yuan R (2018) Highly sensitive electrochemiluminescence immunosensor based on ABEI/H2O2 system with PFO dots as enhancer for detection of kidney injury molecule-1. Biosens Bioelectron 116:16–22

    Article  CAS  Google Scholar 

  10. Yang M, Liu C, Qian K, He P, Fang Y (2002) Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst 127:1267–1271

    Article  CAS  Google Scholar 

  11. Wang C, Zhang N, Li Y, Yang L, Wei D, Yan T, Ju H, Du B, Wei Q (2019) Cobalt-based metal-organic frameworks as co-reaction accelerator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-β protein. Sensor Actuators B-Chem 291:319–328

    Article  CAS  Google Scholar 

  12. Yang H, Wang H, Xiong C, Chai Y, Yuan R (2017) Intramolecular self-enhanced nanochains functionalized by an electrochemiluminescence reagent and its immunosensing application for the detection of urinary beta2-microglobulin. ACS Appl Mater Interfaces 9:36239–36246

    Article  CAS  Google Scholar 

  13. Jiang X, Wang H, Wang H, Yuan R, Chai Y (2016) Signal-switchable electrochemiluminescence system coupled with target recycling amplification strategy for sensitive mercury ion and mucin 1 assay. Anal Chem 88:9243–9250

    Article  CAS  Google Scholar 

  14. Emran M, El-Safty S, Shenashen M, Minowa T (2019) A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensor Actuators B-Chem 284:456–467

    Article  CAS  Google Scholar 

  15. Sun Y, Luo M, Meng X, Xiang J, Wang L, Ren Q, Guo S (2017) Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H2O2 released from cells. Anal Chem 89:3761–3767

    Article  CAS  Google Scholar 

  16. De Poulpiquet A, Diez-Buitrago B, Dumont Milutinovic M, Sentic M, Arbault S, Bouffier L, Kuhn A, Sojic N (2016) Dual enzymatic detection by bulk electrogenerated chemiluminescence. Anal Chem 88:6585–6592

    Article  Google Scholar 

  17. Doroftei F, Pinteala T, Arvinte A (2013) Enhanced stability of a Prussian blue/sol-gel composite for electrochemical determination of hydrogen peroxide. Microchim Acta 181:111–120

    Article  Google Scholar 

  18. Yi T, Gong W, Lei Y, Zeng W, Chai Y, Yuan R, Zhuo Y (2018) New signal probe integrated with ABEI as ECL luminophore and Ag nanoparticles decorated CoS nanoflowers as bis-co-reaction accelerator to develop a ultrasensitive cTnT immunosensor. J Electrochem Soc 165:B686–B693

    Article  CAS  Google Scholar 

  19. Kitte A, Assresahegn D, Soreta R (2013) Electrochemical determination of hydrogen peroxide at glassy carbon electrode modified with palladium nanoparticles. J Serb Chem Soc 78:701–711

    Article  CAS  Google Scholar 

  20. Li P, Yu J, Zhao K, Deng A, Li J (2020) Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol. Biosens Bioelectron 147:111790. https://doi.org/10.1016/j.bios.2019.111790

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Liang W, Lei Y, Ou Y, Chai Y, Yuan R, Zhuo Y (2017) An efficient electrochemiluminescence amplification strategy via bis-co-reaction accelerator for sensitive detection of laminin to monitor overnutrition associated liver damage. Biosens Bioelectron 98:317–324

    Article  CAS  Google Scholar 

  22. Wei X, Chen J, Ali M, Munyemana J, Qiu H (2020) Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose. Microchim Acta 187:314. https://doi.org/10.1007/s00604-020-04298-4

    Article  CAS  Google Scholar 

  23. Li Y, Zhao C (2017) Enhancing water oxidation catalysis on a synergistic phosphorylated nife hydroxide by adjusting catalyst wettability. ACS Catal 7:2535–2541

    Article  CAS  Google Scholar 

  24. Hsu K, Lien C, Lin C, Chang H, Huang C (2014) Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 4:37705–37713

    Article  CAS  Google Scholar 

  25. Zeng L, Cao B, Wang X, Liu H, Shang J, Lang J, Cao X, Gu H (2021) Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. Nanoscale 13:3153–3160

    Article  CAS  Google Scholar 

  26. Chen Y, Zhou S, Li L, Zhu J (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115

    Article  CAS  Google Scholar 

  27. Ham H, Stephens J, Hwang G, Han J, Nam S, Lim T (2011) Pd ensemble effects on oxygen hydrogenation in AuPd alloys: a combined density functional theory and Monte Carlo study. Catal Today 165:138–144

    Article  CAS  Google Scholar 

  28. Yang F, Yang F, Wang G, Kong T, Wang H, Zhang C (2020) Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture 515:734542. https://doi.org/10.1016/j.aquaculture.2019.734542

    Article  CAS  Google Scholar 

  29. Li K, Liu L, Clausen J, Lu M, Dalsgaard A (2016) Management measures to control diseases reported by tilapia (Oreochromis spp.) and whiteleg shrimp (Litopenaeus vannamei) farmers in Guangdong. Aquaculture 457:91–99

    Article  CAS  Google Scholar 

  30. Pfenning A, Roybal J, Gonzales S, Hurlbut J (2000) Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine, and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection. J Aoac Int 83:26–30

    Article  CAS  Google Scholar 

  31. Shen H, Jiang H (2005) Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC–UVD, GC–ECD, GC–MS–EI–SIM and GCMS–NCI–SIM methods. Anal Chim Acta 535:33–41

    Article  CAS  Google Scholar 

  32. Tian L, Bayen S, Yaylayan V (2017) Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. J Anal Appl Pyrol 127:120–125

    Article  CAS  Google Scholar 

  33. Yikilmaz Y, Filazi A (2014) Detection of florfenicol residues in salmon trout via GC-MS. Food Anal Method 8:1027–1033

    Article  Google Scholar 

  34. Barreto F, Ribeiro C, Barcellos Hoff R, Dalla Costa T (2016) Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1449:48–53

    Article  CAS  Google Scholar 

  35. Guidi L, Tette P, Gloria M, Fernandes C (2018) A simple and rapid LC-MS/MS method for the determination of amphenicols in Nile tilapia. Food Chem 262:235–241

    Article  CAS  Google Scholar 

  36. Ma G, Wu P, Wu K, Deng A, Li J (2021) A novel electrochemiluminescence immunoassay based on highly efficient resonance energy transfer for florfenicol detection. Talanta 235:122732. https://doi.org/10.1016/j.talanta.2021.122732

    Article  CAS  PubMed  Google Scholar 

  37. Zhang K, Song T, Wang C, You H, Zou B, Guo S, Du Y, Li S (2021) Surface plasmon resonance boost electrocatalytic alcohol oxidation over three-dimensional PdM (M = Au, Ag, Cu) nanosheet assemblies. Inorg Chem 60:7527–7535

    Article  CAS  Google Scholar 

  38. Liang Z, Zhang C, Xu Y, Zhang W, Zheng H, Cao R (2018) Dual tuning of ultrathin α-Co(OH)2 nanosheets by solvent engineering and coordination competition for efficient oxygen evolution. ACS Sustain Chem Eng 7:3527–3535

    Article  Google Scholar 

  39. Zhang H, Zhang C, Liu D, Zuo F, Chen S, Yuan R, Xu W (2018) A ratiometric electrochemiluminescent biosensor for Con A detecting based on competition of dissolved oxygen. Biosens Bioelectron 120:40–46

    Article  CAS  Google Scholar 

  40. Jiang X, Wang H, Wang H, Zhou Y, Yuan R, Chai Y (2016) Self-enhanced N-(aminobutyl)-N-(ethylisoluminol) derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidase. Nanoscale 8:8017–8023

    Article  CAS  Google Scholar 

  41. Wang Z, Jiang X, Yuan R, Chai Y (2018) N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens Bioelectron 121:250–256

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Science Fund from the National Natural Science Foundation of China (No. 21175097, No. 31772053), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207), the Project of State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1716), the Suzhou Industry, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials (SYG201636), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX10900212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Wu, Anping Deng or Jianguo Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Li, S., Wu, K. et al. Highly sensitive competitive electrochemiluminescence immunosensor based on ABEI-H2O2 system with cobalt hydroxide nanosheets and bimetal PdAg as co-enhancer for detection of florfenicol. Microchim Acta 189, 214 (2022). https://doi.org/10.1007/s00604-022-05248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05248-y

Keywords

Navigation