Skip to main content
Log in

One-pot green preparation of deep-ultraviolet and dual-emission carbon nanodots for dual-channel ratiometric determination of polyphenol in tea sample

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel deep-ultraviolet and dual-emission carbon nanodots (DUCDs)-based dual-channel ratiometric probe was prepared by a one-pot environmental-friendly hydrothermal process using guanidine as the only starting material for sensing polyphenol in tea sample (TPPs). Under the exposure to TPPs, the DUCDs not only provided a characteristic colorimetric response to TPPs, but also displayed TPPs-sensitive ratiometric fluorescence quenching. The detection mechanism was proved to be that enrichment-specific hydroxyl sites (e.g., -NH2 and -COOH) of DUCDs can specifically react with phenolic hydroxyl groups of TPPs to generate dynamic amide and carboxylate bonds by dehydration and/or condensation reaction. As a result, a new carbon nanomaterial with decrement of surface passivation groups, inherent light-absorbing, and invalid fluorescence emission was generated. The ratio (FL297nm/FL395nm) of fluorescence intensity at 297 nm and 395 nm of DUCDs excited at 275 nm decreased with increasing TPPs concentration. The linearity range was 5.0 ng/mL to 100 µg/mL with a detection limit (DL) of 3.5 ± 0.04 ng/mL for TPPs (n = 3, 3σ/k). Colorimetry of DUCDs, best measured as absorbance at 320 nm, was increased linearly in the TPP concentration range 200 ng/mL–200 µg/mL with a DL of 94.7 ± 0.04 ng/mL (n = 3, 3σ/k). The probe was successfully applied to the determination of TPPs in real tea samples, showing potential application prospects in food analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He HF, Wei K, Yin J, Ye Y (2020) Insight into tea flavonoids: composition and chemistry. Food Rev Int 37:1–12

    Google Scholar 

  2. Saikrithika S, Senthil Kumar A (2020) Electrochemical detections of tea polyphenols: a review. Electroanalysis 32:2343–2360

    Article  CAS  Google Scholar 

  3. Wei Q, Liu T, Pu H, Sun DW (2020) Development of a fluorescent microwave-assisted synthesized carbon dots/Cu2+ probe for rapid detection of tea polyphenols. J Food Process Eng 43:e13419

    Article  CAS  Google Scholar 

  4. Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M (2018) Cancer prevention with green tea and its principal constituent, EGCG: from early investigations to current focus on human cancer stem cells. Mol Cell 41:73–82

    CAS  Google Scholar 

  5. Yan M, Shen X, Zhong S, Diao M, Zhao C, Xu Y, Zhang T (2021) Self-assembly system based on water-soluble perylene diimide for sensitive detection and discrimination of tea polyphenols. Dyes Pigments 186:108989

    Article  CAS  Google Scholar 

  6. Kodagoda KHGK, Wickramasinghe I (2017) Health benefits of green and black tea: a review. Int J Adv Engi Res Sci 4:107–112

    Article  Google Scholar 

  7. Okada F, Furuya K (1971) Inhibitory effect of tea catechins on some plant virus diseases. Chagyo Kenkyu Hokoku 1971:69–76

    Article  Google Scholar 

  8. Yang Y, Zhang T (2019) Antimicrobial activities of tea polyphenol on phytopathogens: a review. Molecules 24:816

    Article  PubMed Central  Google Scholar 

  9. Chen Y, Cheng S, Dai J, Wang L, Xu Y, Peng X, Xie X, Peng C (2021) Molecular mechanisms and applications of tea polyphenols: a narrative review. J Food Biochem 45:e13910

    Article  CAS  PubMed  Google Scholar 

  10. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schönthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113:5927–5937

    Article  CAS  PubMed  Google Scholar 

  11. Nian B, Chen L, Yi C, Shi X, Jiang B, Jiao W, Liu Q, Lv C, Ma Y, Zhao M (2019) A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts. Electrophoresis 40:2837–2844

    Article  CAS  PubMed  Google Scholar 

  12. Roowi S, Stalmach A, Mullen W, Lean MEJ, Edwards CA, Crozier A (2010) Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem 58:1296–1304

    Article  CAS  PubMed  Google Scholar 

  13. García-Villalba R, Espín JC, Tom’as-Barber’an FA, Rocha-Guzm’an NE (2017) Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven quercus leaf teas. J Food Compos Anal 63:38–46

    Article  Google Scholar 

  14. Duan Y, Luo X, Qin Y, Zhang H, Sun G, Sun X, Yan Y (2013) Determination of epigallocatechin-3-gallate with a high-efficiency electrochemical sensor based on a molecularly imprinted poly(o-phenylenediamine) film. J Appl Polym Sci 129:2882–2890

    Article  CAS  Google Scholar 

  15. Zhao S, Chen C, Li Z, Yuan Z, Lu C (2017) Hydroxyl radical induced chemiluminescence of hyperbranched polyethyleneimine protected silver nanoclusters and its application in tea polyphenols detection. Anal Methods 9:3114–3120

    Article  CAS  Google Scholar 

  16. Xu X, Ye H, Wang W, Yu L, Chen G (2006) Determination of flavonoids in houttuynia cordata thunb. and saururus chinensis (Lour.) bail. by capillary electrophoresis with electrochemical detection. Talanta 68:759–764

    Article  CAS  PubMed  Google Scholar 

  17. Wang HF, Wu YY, Yan XP (2013) Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots. Anal Chem 85:1920–1925

    Article  CAS  PubMed  Google Scholar 

  18. Wang ZX, Yu XH, Li F, Kong FY, Lv WX, Wang W (2018) Multiplexed ratiometric photoluminescent detection of pyrophosphate using anisotropic boron-doped nitrogen-rich carbon rugby ball-like nanodots. J Mater Chem B 6:1771–1781

    Article  CAS  PubMed  Google Scholar 

  19. Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C (2022) Dual-responsive ratiometric fluorescent probe for hypochlorite and peroxynitrite detection and imaging in vitro and in vivo. Anal Chem 94:1415–1424

    Article  CAS  PubMed  Google Scholar 

  20. Cui F, Sun J, de Dieu HJ, Yang X, Ji J, Zhang Y, Lei H, Li Z, Zheng J, Fan M, Sun X (2019) Ultrasensitive fluorometric angling determination of staphylococcus aureus in vitro and fluorescence imaging in vivo using carbon dots with full-color emission. Anal Chem 91:14681–14690

    Article  CAS  PubMed  Google Scholar 

  21. Tong L, Wang X, Chen Z, Liang Y, Yang Y, Gao W, Liu Z, Tang B (2020) One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging. Anal Chem 92:6430–6436

    Article  CAS  PubMed  Google Scholar 

  22. Wang ZX, Jin X, Wang WJ, Kong FY, Zhu J, Ding LHY, YJ, Wang W, (2021) Green synthesis of a deep-ultraviolet carbonized nanoprobe for ratiometric fluorescent detection of feroxacin and enrofloxacin in food and serum samples. Analyst 146:874–881

    Article  CAS  PubMed  Google Scholar 

  23. Wang ZX, Hu L, Gao YF, Kong FY, Li HY, Zhu J, Fang HL, Wang W (2020) Aggregation-induced emission behavior of dual-NIR-emissive zinc-doped carbon nanosheets for ratiometric anthrax biomarker detection. ACS Appl Bio Mater 3:9031–9042

    Article  CAS  PubMed  Google Scholar 

  24. Wang ZX, Gao YF, Yu XH, Kong FY, Lv WX, Wang W (2018) Photoluminescent coral-like carbon-branched polymers as nanoprobe for fluorometric determination of captopril. Microchim Acta 185:422

    Article  Google Scholar 

  25. Bao L, Zhang ZL, Tian Q, Zhang L, Liu C, Lin Y, Qi B, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  CAS  PubMed  Google Scholar 

  26. Lin H, Gan T, Wu K (2009) Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode. Food Chem 113:701–704

    Article  CAS  Google Scholar 

  27. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    Article  CAS  Google Scholar 

  28. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  CAS  PubMed  Google Scholar 

  29. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740

    Article  CAS  Google Scholar 

  30. Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88:7837–7843

    Article  CAS  PubMed  Google Scholar 

  31. Bai J, Yuan G, Chen X, Zhang L, Zhu Y, Wang X, Ren L (2021) Simple strategy for scalable preparation carbon dots: RTP, time-dependent fluorescence, and NIR behaviors. Adv Sci 8:e2104278

    Google Scholar 

  32. Zhang Q, Wang R, Feng B, Zhong X, Ostrikov KK (2021) Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat Commun 12:6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang H, Liu Y, Guo Z, Lei B, Zhuang J, Zhang X, Liu Z, Hu C (2019) Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat Commun 10:1789

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song SY, Liu KK, Wei JY, Lou Q, Shang Y, Shan CX (2019) Deep-ultraviolet emissive carbon nanodots. Nano Lett 19:5553–5561

    Article  CAS  PubMed  Google Scholar 

  35. Liu KK, Song SY, Sui LZ, Wu SX, Jing PT, Wang RQ, Li QY, Wu GR, Zhang ZZ, Yuan KJ, Shan CX (2019) Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv Sci 6:1900766

    Article  Google Scholar 

  36. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  PubMed  Google Scholar 

  37. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B (2017) Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater 29:1603443

    Article  Google Scholar 

  38. Zhu J, Hu J, Hu Q, Zhang X, Ushakova EV, Liu K, Wang S, Chen X, Shan C, Rogach AL, Bai X (2022) White light afterglow in carbon dots achieved via synergy between the room-temperature phosphorescence and the delayed fluorescence. Small 18:e2105415

    Article  PubMed  Google Scholar 

  39. Yu Y, Wang X, Jia X, Feng Z, Zhang L, Li H, He J, Shen G, Ding X (2021) Aptamer probes labeled with lanthanide-doped carbon nanodots permit dual-modal fluorescence and mass cytometric imaging. Adv Sci 8:e2102812

    Article  Google Scholar 

  40. Zhou D, Li D, Jing P, Zhai Y, Shen D, Qu S, Rogach AL (2017) Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mater 29:1779–1787

    Article  CAS  Google Scholar 

  41. Jiang K, Wang Y, Cai C, Lin H (2018) Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv Mater 30:1800783

    Article  Google Scholar 

  42. Reckmeier CJ, Schneider J, Susha AS, Rogach AL (2016) Luminescent colloidal carbon dots: optical properties and effects of doping. Opt Express 24:A312–A340

    Article  CAS  PubMed  Google Scholar 

  43. Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27:7782–7787

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Liu P, Qin Y, Chen Z, Shen J (2016) Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing. Sensor Actuat B-Chem 223:178–185

    Article  CAS  Google Scholar 

  45. Weyl DA, Murfin D (1966) Fluorescence of phto-degraded tyrosine solutions. Nature 212:921–922

    Article  CAS  PubMed  Google Scholar 

  46. Edelhoch H, Perlman RL, Wilchek M (1969) Tyrosine fluorescence of in proteins. Ann NY Acad Sci 158:391–409

    Article  CAS  PubMed  Google Scholar 

  47. Alghamdi A, Wellbrock T, Birch DJS, Vyshemirsky V, Rolinski OJ (2019) Cu2+ effects on beta-amyloid oligomerisation monitored by the fluorescence of intrinsic tyrosine. ChemPhysChem 20:3181–3185

    Article  CAS  PubMed  Google Scholar 

  48. Preston GW, Phillips DH (2016) Quantification of a peptide standard using the intrinsic fluorescence of tyrosine. Anal Bioanal Chem 408:2187–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Financial support for this work was provided by the National Natural Science Foundation of China (21705140, 21876144, 21974120), and the Natural Science Foundation of Jiangsu Province (BK20170474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Le Li or Wei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 994 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZX., Hu, L., Wang, WJ. et al. One-pot green preparation of deep-ultraviolet and dual-emission carbon nanodots for dual-channel ratiometric determination of polyphenol in tea sample. Microchim Acta 189, 241 (2022). https://doi.org/10.1007/s00604-022-05330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05330-5

Keywords

Navigation