Skip to main content
Log in

Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe3O4 NPs supported by mesoporous graphitized carbon for determination of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A Fe3O4/mesoporous graphitized carbon (Fe3O4/m-GC) composite was prepared through a facile calcination method with iron-based metal–organic frameworks (Fe-MOFs) as a sacrificial template. After carbonization, the Fe3O4 nanoparticles were uniformly dispersed in the mesoporous carbon support, resulting in spatial structural stability. The mesoporous carbon support obtained was highly graphitized and exhibited eminent electrical conductivity, which accelerated the electron transfer between the Fe3O4 nanoparticles by Fe(II)/Fe(III) redox cycles and m-GC by C = Csp2/C-Csp3 redox cycles, leading to the excellent peroxidase-mimetic activity of Fe3O4/m-GC. Km values for tetramethylbenzidine (TMB) and H2O2 were 26.8 and 15.8 times lower than that of natural horseradish peroxidase, respectively. Taking advantage of the peroxidase-mimetic activity of Fe3O4/m-GC, a colorimetric assay was fabricated for detecting glucose in the range 0.5 ~ 200 μM, with a limit of detection of 0.24 μM.

Graphical abstract

Fig 1 A Schematic illustration of the preparation process of Fe3O4/m-GC, B schematic illustration of a proposed synergistic catalytic mechanism of TMB oxidation by Fe3O4/m-GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosso C, Filippini G, Prato M (2020) Carbon dots as nano-organocatalysts for synthetic applications. Acs Catal 10:8090. https://doi.org/10.1021/acscatal.0c01989

    Article  CAS  Google Scholar 

  2. Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML (2020) Pervasive genomic damage in experimental intracerebral hemorrhage: therapeutic potential of a mechanistic-based carbon nanoparticle. ACS Nano 14:2827. https://doi.org/10.1021/acsnano.9b05821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu Z, Cai G, Liu X, Tang D (2020) Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. Acs Appl Mater Inter 12:40133. https://doi.org/10.1021/acsami.0c12074

    Article  CAS  Google Scholar 

  4. Wang X, Zhong X, Bai L, Xie QQ, Pan YX, Liu X, Ma RL, Zheng HZ, Gao M, Wang WL, Li J, Cai XM, Jaouen F, Li R (2020) Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J Am Chem Soc 142:6527. https://doi.org/10.1021/jacs.9b10228

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Yan L, Ren H, Cai YY, Liu CY, Zeng LX, Gu J, Liu A (2020) Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens Bioelectron 165:112342. https://doi.org/10.1016/j.bios.2020.112342

    Article  CAS  PubMed  Google Scholar 

  6. Wu D, Li J, Xu S, Xie QQ, Pan YX, Liu X, Ma RL, Zheng HZ, Gao M, Wang WL, Li J, Cai XM, Jaouen F, Li R (2020) Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J Am Chem Soc 142:19602. https://doi.org/10.1021/jacs.0c08360

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Chen J, Wu W, Fang Y, Dong S (2020) Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc 142:15569. https://doi.org/10.1021/jacs.0c07273

    Article  CAS  PubMed  Google Scholar 

  8. Wu S, Guo D, Xu X, Pan J, Niu X (2020) Colorimetric quantification and discrimination of phenolic pollutants based on peroxidase-like Fe3O4 nanoparticles. Sensor Actuat B-Chem 303:127225. https://doi.org/10.1016/j.snb.2019.127225

    Article  CAS  Google Scholar 

  9. Chang S, Liu C, Sun Y, Yan ZF, Zhang XH, Hu XD, Zhang HQ (2020) Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal-organic framework MIL-100(Fe) for the Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Mat 3:2302. https://doi.org/10.1021/acsanm.9b02415

    Article  CAS  Google Scholar 

  10. Kim HJ, Choi H, Sharma AK, Hong WG, Shin K, Song H, Kim HY, Hong YJ (2021) Recyclable aqueous metal adsorbent: Synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe3O4 nanoparticles@graphene–poly-N-phenylglycine nanofibers. J Hazard Mater 401:123283. https://doi.org/10.1016/j.jhazmat.2020.123283

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Huo D, Jiang L, Zhou S, Yang M, Hou C (2020) Synthesis of dopamine-derived N-doped carbon nanotubes/Fe3O4 composites as enhanced electrochemical sensing platforms for hydrogen peroxide detection. Microchim Acta 187:605. https://doi.org/10.1007/s00604-020-04575-2

    Article  CAS  Google Scholar 

  12. Zubir NA, Yacou C, Motuzas J, Zhang X, Zhao XS, Diniz da Costa JC (2015) The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3O4. Chem Commun (Camb) 51:9291. https://doi.org/10.1039/c5cc02292d

    Article  CAS  Google Scholar 

  13. Chen WH, Huang JR, Lin CH, Huang CP (2020) Catalytic degradation of chlorpheniramine over GO-Fe3O4 in the presence of H2O2 in water: The synergistic effect of adsorption. Sci Total Environ 736:139468. https://doi.org/10.1016/j.scitotenv.2020.139468

    Article  CAS  PubMed  Google Scholar 

  14. Torad NL, Ding B, El-Said WA, El-Hady WA, Alshitari W, Na J, Yamauchi Y, Zhang XG (2020) MOF-derived hybrid nanoarchitectured carbons for gas discrimination of volatile aromatic hydrocarbons. Carbon 168:55. https://doi.org/10.1016/j.carbon.2020.05.013

    Article  CAS  Google Scholar 

  15. Xu Z, Wang R, Chen Y, Chen ML, Zhang J, Cheng YH, Xu JG, Chen W (2021) Three-dimensional assembly and disassembly of Fe3O4-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A. Microchim Acta 188:90. https://doi.org/10.1007/s00604-021-04718-z

    Article  CAS  Google Scholar 

  16. Xu Z, Long LL, Chen YQ, Chen ML, Cheng YH (2021) A nanozyme-linked immunosorbent assay based on metal–organic frameworks (MOFs) for sensitive detection of aflatoxin B1. Food Chem 338:128039. https://doi.org/10.1016/j.foodchem.2020.128039

    Article  CAS  PubMed  Google Scholar 

  17. Chen ML, Ning P, Jiao Y, Xu Z, Cheng YH (2021) Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chem 337:128069. https://doi.org/10.1016/j.foodchem.2020.128069

    Article  CAS  PubMed  Google Scholar 

  18. Xu Z, Zhang LW, Long LL, Zhu SH, Chen ML, Ding L, Cheng YH (2020) Metal organic frame-upconverting nanoparticle assemblies for the fret based sensor detection of Bisphenol A in High-Salt Foods. Front Bioeng Biotechnol 8:626269. https://doi.org/10.3389/fbioe.2020.626269

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qiao M, Lei X, Ma Y, Tian LD, He XW, Su KH, Zhang QY (2018) Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res 11:1500. https://doi.org/10.1007/s12274-017-1767-0

    Article  CAS  Google Scholar 

  20. Wang T, Wang Y, Cheng G, Ma C, Liu XJ, Wang JT, Qiao WM, Ling LC (2020) Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuels 34:8911. https://doi.org/10.1021/acs.energyfuels.0c00995

    Article  CAS  Google Scholar 

  21. Devi RK, Muthusankar G, Chen S-M, Gopalakrishnan G (2021) In situ formation of Co3O4 nanoparticles embedded N-doped porous carbon nanocomposite: a robust material for electrocatalytic detection of anticancer drug flutamide and supercapacitor application. Microchim Acta 188:196. https://doi.org/10.1007/s00604-021-04860-8

    Article  CAS  Google Scholar 

  22. Ahmed A, John P, Nawaz MH, Hayat A, Nasir M (2019) Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide. Acs Applied Nano Mat 2:5156. https://doi.org/10.1021/acsanm.9b01036

    Article  CAS  Google Scholar 

  23. Aghayan M, Mahmoudi A, Nazari K, Dehghanpour S, Sohrabi S, Reza Sazegar M, Mohammadian-Tabrizi N (2019) Fe(III) porphyrin metal–organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. J Porous Mat 26:1507. https://doi.org/10.1007/s10934-019-00748-4

    Article  CAS  Google Scholar 

  24. Chen S, Chi M, Yang Z, Gao M, Wang C, Lu X (2017) Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid. Inorg Chem Front 4:1621. https://doi.org/10.1039/c7qi00308k

    Article  CAS  Google Scholar 

  25. Lu N, Zhang M, Ding L, Zheng J, Zeng CX, Wen YL, Liu G, Aldalbahi A, Shi JY, Song SP, Zuo XL, Wang LH (2017) Yolk–shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9:4508. https://doi.org/10.1039/c7nr00819h

    Article  CAS  PubMed  Google Scholar 

  26. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206. https://doi.org/10.1002/adma.200903783

    Article  CAS  PubMed  Google Scholar 

  27. Gao L, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Qi K, Yu S, Jia GR, Cheng ZL, Zheng LR, Wu Q, Bao QL, Wang QQ, Zhao JX, Cui XQ, Zheng WT (2019) Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Letters 11:102. https://doi.org/10.1007/s40820-019-0324-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu X, Shi Q, Zhu W, Liu D, Tian HY, Fu SF, Cheng N, Li SQ, Smith JN, Du D, Lin YH (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495. https://doi.org/10.1016/j.bios.2019.111495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu J, Luo G, Xi X, Wang YJ, NimalSelvaraj J, Wen W, Zhang XH, Wang SF (2021) Cu2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity. Microchim Acta 188:8. https://doi.org/10.1007/s00604-020-04690-0

    Article  CAS  Google Scholar 

  31. Espinosa JC, Navalón S, Primo A, Moral M, Fernández Sanz J, Álvaro M, García H (2015) Graphenes as efficient metal-free fenton catalysts. Chem Eur J 21:11966. https://doi.org/10.1002/chem.201501533

    Article  CAS  PubMed  Google Scholar 

  32. Matsumoto Y, Koinuma M, Ida S, Hayami S, Taniguchi T, Hatakeyama K, Tateishi H, Watanabe Y, Amano S (2011) Photoreaction of graphene oxide nanosheets in water. J phys chem c 115:19280. https://doi.org/10.1021/jp206348s

    Article  CAS  Google Scholar 

  33. Sadegh F, Politakos N, de San G, Roman E, Sanz O, Perez-Miqueo I, Enrique Moya S, Tomovska R (2020) A green synthesis of nanocatalysts based on reduced graphene oxide/magnetic nanoparticles for the degradation of Acid Red 1. Rsc Adv 10:38805. https://doi.org/10.1039/d0ra06311h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu JT, Zhang HW, Li S, Guo SS, Shen L, Zhou TT, Zhong H, Wu L, Meng QG, Zhang YX (2020) Oxygen-vacancy-enhanced peroxidase-like activity of reduced Co3O4 Nanocomposites for the colorimetric detection of H2O2 and glucose. Inorg Chem 59:3152. https://doi.org/10.1021/acs.inorgchem.9b03512

    Article  CAS  PubMed  Google Scholar 

  35. Huang YM, Dong WF, Zhuang YX, Li SQ, Zhang XD, Chai HX (2018) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sens Actuators B Chem 255:2050. https://doi.org/10.1016/j.snb.2017.09.013

    Article  CAS  Google Scholar 

  36. Zheng HQ, Liu CY, Zeng XY, Chen J, Lü J, Lin RG, Cao R, Lin ZJ, Su JW (2018) MOF-808: A metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral ph for colorimetric biosensing. Inorg Chem 57:9096. https://doi.org/10.1021/acs.inorgchem.8b01097

    Article  CAS  PubMed  Google Scholar 

  37. Dong W, Huang Y (2020) CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Microchim Acta 187:11. https://doi.org/10.1007/s00604-019-4032-2

    Article  CAS  Google Scholar 

  38. Shi Y, Su P, Wang YY, Yang Y (2014) Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 80:2250–2254. https://doi.org/10.1016/j.talanta.2014.06.053

    Article  CAS  Google Scholar 

  39. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969. https://doi.org/10.1039/c2nr12109c

    Article  CAS  PubMed  Google Scholar 

  40. Wang QQ, Zhang XP, Huang L, Zhang ZQ, Dong SJ (2017) One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl Mater Interfaces 9:7465–7471. https://doi.org/10.1021/acsami.6b16034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Nature Science Foundation of Hunan (2021JJ30701), the National Natural Science Foundation of China (31401566, 31601550) and the National Key R&D Program of China (2016YFF0203701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Xu or Yun-Hui Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2985 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, L., Li, K. et al. Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe3O4 NPs supported by mesoporous graphitized carbon for determination of glucose. Microchim Acta 188, 421 (2021). https://doi.org/10.1007/s00604-021-05035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05035-1

Keywords

Navigation