Skip to main content
Log in

Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A core consisting of nanoporous carbon (MNPC) and magnetized with Co3O4 was coated with a molecularly imprinted polymer (MIP) by atom transfer radical precipitation polymerization. Ethyl 3-coumarincarboxylate was used as a pseudo-template to give a MIP that has a fairly specific recognition capability for aflatoxins. Batch rebinding studies were carried out to determine the specific adsorption equilibrium and specific recognition. Extraction is achieved in a single step by mixing and vortexing the sample extract with the Co-MNPC@MIP. The loaded nanosorbent was then magnetically separated and eluted with acetonitrile/water (6/4, v/v). The aflatoxins were then quantified by HPLC. Under optimal conditions, the detection limits for aflatoxins typically are 0.05–0.07 ng mL−1, recoveries from spiked corn are found to be 75.1 to 99.4%, and relative standard deviations range from 1.7 to 5.1 (n = 6).

Poly(methacrylic acid) was imprinted with the pseudo-template ethyl 3-coumarincarboxylate by atom transfer radical precipitation polymerization on the surface of cobalt-derived magnetic nanoporous carbon (Co-MNPC). This nanosorbent was used for the magnetic solid phase extraction of aflatoxins, followed by HPLC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eaton DL, Groopman, JD (2013) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Academic Press, Cambridge

  2. Liu H, Luan Y, Lu A, Li B, Yang M, Wang J (2017) An oligosorbent-based aptamer affinity column for selective extraction of aflatoxin B2 prior to HPLC with fluorometric detection. Microchim Acta 185(1):71. https://doi.org/10.1007/s00604-017-2591-7

    Article  CAS  Google Scholar 

  3. Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1038(1):157–170

    Article  CAS  Google Scholar 

  4. Lindsey ME, Meyer M, Thurman E (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73(19):4640–4646

    Article  CAS  Google Scholar 

  5. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    CAS  PubMed  Google Scholar 

  6. Chen M, Wang R, Zhu Y, Liu M, Zhu F, Xiao J, Chen X (2018) 4-Mercaptophenylboronic acid-modified spirally-curved mesoporous silica nanofibers coupled with ultra performance liquid chromatography–mass spectrometry for determination of brassinosteroids in plants. Food Chem 263:51–58. https://doi.org/10.1016/j.foodchem.2018.04.129

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Wang E, Wu Z, Li H, Zhu Z, Zhu X, Dong Y (2014) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101(supplement C):517–523. https://doi.org/10.1016/j.carbpol.2013.09.078

    Article  CAS  PubMed  Google Scholar 

  8. Tamayo F, Turiel E, Martín-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152(1):32–40

    Article  CAS  Google Scholar 

  9. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942

    Article  CAS  Google Scholar 

  10. Gale PA, Steed JW (2012) Supramolecular chemistry: from molecules to nanomaterials, vol 8. Wiley,Hoboken

  11. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2003) Molecular imprinting: from fundamentals to applications, vol 148. Wiley-VCH, Weinheim

  12. Zu B, Pan G, Guo X, Zhang Y, Zhang H (2009) Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization. J Polym Sci A Polym Chem 47(13):3257–3270. https://doi.org/10.1002/pola.23389

    Article  CAS  Google Scholar 

  13. Patten TE, Matyjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 10(12):901–915. https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B

    Article  CAS  Google Scholar 

  14. Zhang M, He J, Shen Y, He W, Li Y, Zhao D, Zhang S (2018) Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids. Talanta 178(supplement C):1011–1016. https://doi.org/10.1016/j.talanta.2017.08.100

    Article  CAS  PubMed  Google Scholar 

  15. Xie X, Chen L, Pan X, Wang S (2015) Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis. J Chromatogr A 1405(supplement C):32–39. https://doi.org/10.1016/j.chroma.2015.05.068

    Article  CAS  PubMed  Google Scholar 

  16. Zheng L, Zhao X-E, Ji W, Wang X, Tao Y, Sun J, Xu Y, Wang X, Zhu S, You J (2018) Core-shell magnetic molecularly imprinted polymers used rhodamine B hydroxyproline derivate as template combined with in situ derivatization for the specific measurement of L-hydroxyproline. J Chromatogr A 1532:30–39. https://doi.org/10.1016/j.chroma.2017.11.053

    Article  CAS  PubMed  Google Scholar 

  17. Anirudhan TS, Christa J, Deepa JR (2017) Extraction of melamine from milk using a magnetic molecularly imprinted polymer. Food Chem 227:85–92. https://doi.org/10.1016/j.foodchem.2016.12.090

    Article  CAS  PubMed  Google Scholar 

  18. Liu G, Jiang Z, Cao K, Nair S, Cheng X, Zhao J, Gomaa H, Wu H, Pan F (2017) Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J Membr Sci 523(supplement C):185–196. https://doi.org/10.1016/j.memsci.2016.09.064

    Article  CAS  Google Scholar 

  19. Hao L, Wang C, Wu Q, Li Z, Zang X, Wang Z (2014) Metal–organic framework derived magnetic Nanoporous carbon: novel adsorbent for magnetic solid-phase extraction. Anal Chem 86(24):12199–12205

    Article  CAS  Google Scholar 

  20. Tan L, He R, Chen K, Peng R, Huang C, Yang R, Tang Y (2016) Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles. Microchim Acta 183(4):1469–1477

    Article  CAS  Google Scholar 

  21. Low Z-X, Yao J, Liu Q, He M, Wang Z, Suresh AK, Bellare J, Wang H (2014) Crystal transformation in Zeolitic-Imidazolate framework. Cryst Growth Des 14(12):6589–6598. https://doi.org/10.1021/cg501502r

    Article  CAS  Google Scholar 

  22. Sorribes-Soriano A, Esteve-Turrillas FA, Armenta S, Montoya A, Herrero-Martínez JM, de la Guardia M (2018) Magnetic molecularly imprinted polymers for the selective determination of cocaine by ion mobility spectrometry. J Chromatogr A 1545:22–31. https://doi.org/10.1016/j.chroma.2018.02.055

    Article  CAS  PubMed  Google Scholar 

  23. Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2017) Electrochemical sensors based on magnetic molecularly imprinted polymers: a review. Anal Chim Acta 960:1–17. https://doi.org/10.1016/j.aca.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  24. Huang S, Xu J, Zheng J, Zhu F, Xie L, Ouyang G (2018) Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 410:3991–4014. https://doi.org/10.1007/s00216-018-1013-y

    Article  CAS  PubMed  Google Scholar 

  25. Xie L, Guo J, Zhang Y, Hu Y, You Q, Shi S (2015) Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem 178:18–25. https://doi.org/10.1016/j.foodchem.2015.01.069

    Article  CAS  PubMed  Google Scholar 

  26. Ning F, Qiu T, Wang Q, Peng H, Li Y, Wu X, Zhang Z, Chen L, Xiong H (2017) Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem 221:1797–1804. https://doi.org/10.1016/j.foodchem.2016.10.101

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Zhu F, Chen M, Zhu Y, Xiao J, Yang H, Chen X (2019) Rapid and visual detection of aflatoxin B1 in foodstuffs using aptamer/G-quadruplex DNAzyme probe with low background noise. Food Chem 271:581–587. https://doi.org/10.1016/j.foodchem.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Zhou T, Ding J, He Z, Li J, Liang Z, Li C, Li Y, Chen Y, Ding L (2018) Preparation of magnetic superhydrophilic molecularly imprinted composite resin based on multi-walled carbon nanotubes to detect triazines in environmental water. Chem Eng J 334:2293–2302. https://doi.org/10.1016/j.cej.2017.11.185

    Article  CAS  Google Scholar 

  29. Liu X, Wang C, Wang Z, Wu Q, Wang Z (2015) Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides. Microchim Acta 182(11):1903–1910. https://doi.org/10.1007/s00604-015-1530-8

    Article  CAS  Google Scholar 

  30. Xing W, Zhuo S-P, Gao X-l (2009) α-Fe-incorporated nanoporous carbon with magnetic properties. Mater Lett 63(13):1177–1179. https://doi.org/10.1016/j.matlet.2009.02.023

    Article  CAS  Google Scholar 

  31. Zhang X, Ji G, Liu W, Quan B, Liang X, Shang C, Cheng Y, Du Y (2015) Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-co/nanoporous carbon microwave absorbing material. Nanoscale 7(30):12932–12942

    Article  CAS  Google Scholar 

  32. Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct Synthesis of MOF-Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small 10(10):2096–2107. https://doi.org/10.1002/smll.201302910

    Article  CAS  PubMed  Google Scholar 

  33. Sellergren B (2000) Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry. Elsevier Science, Amsterdam

  34. Xue S, Jiang H, Zhong Z, Low Z-X, Chen R, Xing W (2016) Palladium nanoparticles supported on a two-dimensional layered zeolitic imidazolate framework-L as an efficient size-selective catalyst. Microporous Mesoporous Mater 221:220–227. https://doi.org/10.1016/j.micromeso.2015.09.053

    Article  CAS  Google Scholar 

  35. Nasir AM, Md Nordin NAH, Goh PS, Ismail AF (2018) Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: kinetic, isotherm and mechanism. J Mol Liq 250:269–277. https://doi.org/10.1016/j.molliq.2017.12.005

    Article  CAS  Google Scholar 

  36. Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2016) Characterization and properties of Zn/co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A 5(3):952–957

    Article  Google Scholar 

  37. Liu Q, Low Z-X, Feng Y, Leong S, Zhong Z, Yao J, Hapgood K, Wang H (2014) Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous Mesoporous Mater 194:1–7. https://doi.org/10.1016/j.micromeso.2014.03.023

    Article  CAS  Google Scholar 

  38. Liu S, Pan J, Zhu H, Pan G, Qiu F, Meng M, Yao J, Yuan D (2016) Graphene oxide based molecularly imprinted polymers with double recognition abilities: the combination of covalent boronic acid and traditional non-covalent monomers. Chem Eng J 290:220–231. https://doi.org/10.1016/j.cej.2016.01.061

    Article  CAS  Google Scholar 

  39. Urraca JL, Huertas-Pérez JF, Cazorla GA, Gracia-Mora J, García-Campaña AM, Moreno-Bondi MC (2016) Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem 408(11):3033–3042. https://doi.org/10.1007/s00216-016-9348-8

    Article  CAS  PubMed  Google Scholar 

  40. Low Z-X, Razmjou A, Wang K, Gray S, Duke M, Wang H (2014) Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J Membr Sci 460:9–17. https://doi.org/10.1016/j.memsci.2014.02.026

    Article  CAS  Google Scholar 

  41. Li X, Zhang W, Liu Y, Li R (2016) Palladium nanoparticles immobilized on magnetic porous carbon Derived from ZIF-67 as efficient catalysts for the Semihydrogenation of Phenylacetylene under extremely mild conditions. Chemcatchem 8(6):1111–1118

    Article  CAS  Google Scholar 

  42. Wang Z, Beier RC, Shen J (2017) Immunoassays for the detection of macrocyclic lactones in food matrices – a review. TrAC Trends Anal Chem 92:42–61. https://doi.org/10.1016/j.trac.2017.04.008

    Article  CAS  Google Scholar 

  43. Gao B, Chen L, Li Y (2016) Preparation of surface imprinted material of single enantiomer of mandelic acid with a new surface imprinting technique and study on its chiral recognition and resolution properties. J Chromatogr A 1443:10–20. https://doi.org/10.1016/j.chroma.2016.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support from the following research funds: National Natural Science Foundation of China (21575034, 51502079, 21577031, 21775140), the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (2017RCJH10). We are especially indebted to Prof. Shi Bai from University of Delaware for helping to polish the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan He.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 5043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., He, J., Li, Y. et al. Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Microchim Acta 185, 515 (2018). https://doi.org/10.1007/s00604-018-3051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3051-8

Keywords

Navigation