Skip to main content
Log in

Synthesis of a core–shell magnetic covalent organic framework for the enrichment and detection of aflatoxin in food using HPLC-MS/MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A porous magnetic covalent organic framework, Fe3O4@TPBD-TPA (terephthalaldehyde (TPA) , N, N, N′, N′-tetrakis(p-aminophenyl)-p-phenylenediamine (TPBD)), was synthesized using the Schiff base reaction under mild reaction conditions. This adsorbent exhibited excellent adsorption performance for aflatoxins. The adsorption capacity of Fe3O4@TPBD-TPA for aflatoxins ranged from 64.4 to 84.4 mg/g. A magnetic solid-phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method based on Fe3O4@TPBD-TPA was developed for the efficient determination of four types of aflatoxins in food samples (maize, maize oil, peanut, and peanut oil). The determination coefficients (R2) were ≥0.9972. The method exhibited detection limits ranging from 0.01 to 0.06 μg/kg and spiked recoveries of 80.0 to 113.1%. The intra-day and inter-day precision were less than 6.77%, indicating good repeatability. The adsorbent showed promising prospects for the efficient enrichment of trace amounts of aflatoxins in complex food matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meggs WJ (2009) Epidemics of mold poisoning past and present. Toxicol Ind Health 25(9-10):571–576. https://doi.org/10.1177/0748233709348277

    Article  PubMed  Google Scholar 

  2. Iqbal SZ, Asi MR, Jinap S (2014) Aflatoxins in dates and dates products. Food Control 43:163–166. https://doi.org/10.1016/j.foodcont.2014.03.010

    Article  CAS  Google Scholar 

  3. Zhuang Z, Huang Y, Yang Y, Wang S (2016) Identification of AFB1-interacting proteins and interactions between RPSA and AFB1. J Hazard Mater 301:297–303. https://doi.org/10.1016/j.jhazmat.2015.08.053

    Article  CAS  PubMed  Google Scholar 

  4. Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43(3):245–264. https://doi.org/10.1080/10408690390826518

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Xu X, Guo W, Zhang Y, Feng X, Zhang F (2022) Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem 387:132821. https://doi.org/10.1016/j.foodchem.2022.132821

    Article  CAS  PubMed  Google Scholar 

  6. Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, MacDonald S, Crews C (2008) Mycotoxin analysis: an update. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(2):152–163. https://doi.org/10.1080/02652030701765723

    Article  CAS  PubMed  Google Scholar 

  7. Jiménez Medina ML, Lafarga T, Garrido Frenich A, Romero-González R (2019) Natural occurrence, legislation, and determination of aflatoxins using chromatographic methods in food: a review (from 2010 to 2019). Food Rev Intl 37(3):244–275. https://doi.org/10.1080/87559129.2019.1701009

    Article  CAS  Google Scholar 

  8. Maggira M, Ioannidou M, Sakaridis I, Samouris G (2021) Determination of aflatoxin M1 in raw milk using an HPLC-FL method in comparison with commercial ELISA kits-application in raw milk samples from various regions of Greece. Vet Sci 8(3). https://doi.org/10.3390/vetsci8030046

  9. López Grío SJ, Garrido Frenich A, Martínez Vidal JL, Romero-González R (2010) Determination of aflatoxins B1, B2, G1, G2 and ochratoxin A in animal feed by ultra high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 33(4-5):502–508. https://doi.org/10.1002/jssc.200900663

    Article  CAS  PubMed  Google Scholar 

  10. Xie L, Chen M, Ying Y (2016) Development of methods for determination of aflatoxins. Crit Rev Food Sci Nutr 56(16):2642–2664. https://doi.org/10.1080/10408398.2014.907234

    Article  CAS  PubMed  Google Scholar 

  11. Parker WA, Melnick D (1966) Absence of aflatoxin from refined vegetable oils. J Am Oil Chem Soc 43(11):635–638. https://doi.org/10.1007/bf02640803

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Xu JJ, Huang BF, Cai ZX, Ren YP (2017) High-performance liquid chromatographic determination of multi-mycotoxin in cereals and bean foodstuffs using interference-removal solid-phase extraction combined with optimized dispersive liquid-liquid microextraction. J Sep Sci 40(10):2141–2150. https://doi.org/10.1002/jssc.201601326

    Article  CAS  PubMed  Google Scholar 

  13. Ardic M, Karakaya Y, Atasever M, Durmaz H (2008) Determination of aflatoxin B(1) levels in deep-red ground pepper (isot) using immunoaffinity column combined with ELISA. Food Chem Toxicol 46(5):1596–1599. https://doi.org/10.1016/j.fct.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  14. Frenich AG, Romero-González R, Gómez-Pérez ML, Vidal JL (2011) Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. J Chromatogr A 1218(28):4349–4356. https://doi.org/10.1016/j.chroma.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  15. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J et al (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  16. Anklam E, Berg H, Mathiasson L, Sharman M, Ulberth F (1998) Supercritical fluid extraction (SFE) in food analysis: a review. Food Addit Contam 15(6):729–750. https://doi.org/10.1080/02652039809374703

    Article  CAS  PubMed  Google Scholar 

  17. Wu Y, Yu B, Cui P, Yu T, Shi G, Shen Z (2021) Development of a quantum dot-based lateral flow immunoassay with high reaction consistency to total aflatoxins in botanical materials. Anal Bioanal Chem 413(6):1629–1637. https://doi.org/10.1007/s00216-020-03123-4

    Article  CAS  PubMed  Google Scholar 

  18. Vojoudi H, Badiei A, Bahar S, Mohammadi Ziarani G, Faridbod F, Ganjali MR (2017) A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J Magn Magn Mater 441:193–203. https://doi.org/10.1016/j.jmmm.2017.05.065

    Article  CAS  Google Scholar 

  19. Vojoudi H, Badiei A, Banaei A, Bahar S, Karimi S, Mohammadi Ziarani G et al (2017) Extraction of gold, palladium and silver ions using organically modified silica-coated magnetic nanoparticles and silica gel as a sorbent. Microchimica Acta 184(10):3859–3866. https://doi.org/10.1007/s00604-017-2414-x

    Article  CAS  Google Scholar 

  20. Modheji M, Emadi H, Vojoudi H (2020) Efficient pre-concentration of As(III) in food samples using guanidine-modified magnetic mesoporous silica. J Porous Mater 27(4):971–978. https://doi.org/10.1007/s10934-020-00873-5

    Article  CAS  Google Scholar 

  21. Banaei A, Vojoudi H, Karimi S, Bahar S, Pourbasheer E (2015) Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag(i) from aqueous samples. RSC Adv 5(101):83304–83313. https://doi.org/10.1039/c5ra11765h

    Article  CAS  Google Scholar 

  22. Vojoudi H, Badiei A, Bahar S, Mohammadi Ziarani G, Faridbod F, Ganjali MR (2017) Post-modification of nanoporous silica type SBA-15 by bis(3-triethoxysilylpropyl)tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technol 319:271–278. https://doi.org/10.1016/j.powtec.2017.06.028

    Article  CAS  Google Scholar 

  23. Banaei A, Farokhi Yaychi M, Karimi S, Vojoudi H, Namazi H, Badiei A et al (2018) 2,2’-(butane-1,4-diylbis(oxy))dibenzaldehyde cross-linked magnetic chitosan nanoparticles as a new adsorbent for the removal of reactive red 239 from aqueous solutions. Mater Chem Phys 212:1–11. https://doi.org/10.1016/j.matchemphys.2018.02.036

    Article  CAS  Google Scholar 

  24. Wang D, Jana D, Zhao Y (2020) Metal-organic framework derived nanozymes in biomedicine. Acc Chem Res 53(7):1389–1400. https://doi.org/10.1021/acs.accounts.0c00268

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Zhang Y, Xia H, Mu Y, Liu X (2016) A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu(2+) ions. Chem Commun (Camb) 52(39):6613–6616. https://doi.org/10.1039/c6cc01476c

    Article  CAS  PubMed  Google Scholar 

  26. Esrafili A, Wagner A, Inamdar S, Acharya AP (2021) Covalent organic frameworks for biomedical applications. Adv Healthc Mater 10(6):e2002090. https://doi.org/10.1002/adhm.202002090

    Article  CAS  PubMed  Google Scholar 

  27. Blesa J, Soriano JM, Moltó JC, Marín R, Mañes J (2003) Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography. J Chromatogr A 1011(1-2):49–54. https://doi.org/10.1016/s0021-9673(03)01102-6

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Zhang M, Fu F, Li J, Lin Z (2018) Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine. J Chromatogr A 1567:136–146. https://doi.org/10.1016/j.chroma.2018.06.066

    Article  CAS  PubMed  Google Scholar 

  29. Lin G, Gao C, Zheng Q, Lei Z, Geng H, Lin Z et al (2017) Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem Commun (Camb) 53(26):3649–3652. https://doi.org/10.1039/c7cc00482f

    Article  CAS  PubMed  Google Scholar 

  30. Li CY, Liu JM, Wang ZH, Lv SW, Zhao N, Wang S (2020) Integration of Fe(3)O(4)@UiO-66-NH(2)@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix. J Hazard Mater 384:121348. https://doi.org/10.1016/j.jhazmat.2019.121348

    Article  CAS  PubMed  Google Scholar 

  31. Dhanshetty M, Banerjee K (2019) Simultaneous direct analysis of aflatoxins and ochratoxin a in cereals and their processed products by ultra-high performance liquid chromatography with fluorescence detection. J AOAC Int 102(6):1666–1672. https://doi.org/10.5740/jaoacint.19-0048

    Article  CAS  PubMed  Google Scholar 

  32. Zhou NZ, Liu P, Su XC, Liao YH, Lei NS, Liang YH et al (2017) Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils. Anal Chim Acta 970:38–46. https://doi.org/10.1016/j.aca.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  33. Pellicer-Castell E, Belenguer-Sapina C, Borras VJ, Amoros P, El Haskouri J, Herrero-Martinez JM et al (2019) Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochim Acta 186(12):792. https://doi.org/10.1007/s00604-019-3958-8

    Article  CAS  PubMed  Google Scholar 

  34. Yu L, Ma F, Ding X, Wang H, Li P (2018) Silica/graphene oxide nanocomposites: Potential adsorbents for solid phase extraction of trace aflatoxins in cereal crops coupled with high performance liquid chromatography. Food Chem 245:1018–1024. https://doi.org/10.1016/j.foodchem.2017.11.070

    Article  CAS  PubMed  Google Scholar 

  35. Jayasinghe G, Dominguez-Gonzalez R, Bermejo-Barrera P, Moreda-Pineiro A (2020) Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1609:460431. https://doi.org/10.1016/j.chroma.2019.460431

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Huang J, Ma L, Wang F (2017) Development and validation of a simple and fast method for simultaneous determination of aflatoxin B(1) and sterigmatocystin in grains. Food Chem 221:11–17. https://doi.org/10.1016/j.foodchem.2016.10.036

    Article  CAS  PubMed  Google Scholar 

  37. Jiménez Medina ML, Lafarga T, Garrido Frenich A, Romero-González R (2019) Natural occurrence, legislation, and determination of aflatoxins using chromatographic methods in food: a review (from 2010 to 2019). Food Rev Intl 37:244–275

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (32372430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Xu, X., Wang, X. et al. Synthesis of a core–shell magnetic covalent organic framework for the enrichment and detection of aflatoxin in food using HPLC-MS/MS. Microchim Acta 190, 488 (2023). https://doi.org/10.1007/s00604-023-06051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06051-z

Keywords

Navigation