Skip to main content
Log in

An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric method is described for the determination of Pt(II). It is based on the use of gold nanoparticles (AuNPs) which are known to aggregate in the presence of a cationic polymer such as poly(diallyldimethylammonium chloride) (PDDA). If, however, a mismatched aptamer (AA) electrostatically binds to PDDA, aggregation is prevented. Upon the addition of Pt(II), it will bind to the aptamer and induce the formation of a hairpin structure. Hence, interaction between aptamer and PDDA is suppressed and PDDA will induce the aggregation of the AuNPs. This is accompanied by a color change from red to blue. The effect can be observed with bare eyes and quantified by colorimetry via measurement of the ratio of absorbances at 610 nm and 520 nm. Response is linear in the 0.24–2 μM Pt(II) concentration range, and the detection limit is 58 nM. The assay is completed within 15 min and selective for Pt(II) even in the presence of other metal ions. It was successfully applied to the rapid determination of Pt(II) in spiked soil samples.

Schematic representation of the method for detection of Pt(II) based on the use of a cationic polymer and gold nanoparticles. In the presence of Pt(II), aptamer interacts with the Pt(II) and prevents the interaction between aptamer and cationic polymer. Hence, cationic polymer induce the aggregation of the AuNPs and lead to the color change from red to blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brabec V, Kasparkova J (2005) Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 8(3):131–146

    Article  CAS  PubMed  Google Scholar 

  2. Oza AM, Cibula D, Benzaquen AO, Poole C, Mathijssen RHJ, Sonke GS, Colombo N, Špaček J, Vuylsteke P, Hirte H (2015) Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 16(1):87–97

    Article  CAS  PubMed  Google Scholar 

  3. Orecchio S, Amorello D, Carollo C (2012) Voltammetric determination of platinum in perfusate and blood: preliminary data on pharmacokinetic study of arterial infusion with oxaliplatin. Microchem J 100(1):72–76

    Article  CAS  Google Scholar 

  4. Rudolph E, Hann S, Stingeder G, Reiter C (2005) Ultra-trace analysis of platinum in human tissue samples. Anal Bioanal Chem 382(7):1500–1506

    Article  CAS  PubMed  Google Scholar 

  5. Brouwers EE, Tibben MM, Joerger M, Van TO, Rosing H, Schellens JH, Beijnen JH (2005) Determination of oxaliplatin in human plasma and plasma ultrafiltrate by graphite-furnace atomic-absorption spectrometry. Anal Bioanal Chem 382(7):1484–1490

    Article  CAS  PubMed  Google Scholar 

  6. Ip V, Mckeage M, Thompson P, Damianovich D, Findlay M, Liu J (2008) Platinum-specific detection and quantification of oxaliplatin and Pt (R,R-diaminocyclohexane) Cl2 in the blood plasma of colorectal cancer patients. J Anal Atom Spectrom 23(6):881–884

    Article  CAS  Google Scholar 

  7. Fabian M, Solomaha E, Olson JS, Maresso AW (2009) Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP-SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP-MS detection. J Anal Atom Spectrom 24(10):1336–1342

    Article  CAS  Google Scholar 

  8. Huang Z, Timerbaev AR, Keppler BK, Hirokawa T (2006) Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. J Chromatogr A 1106(1–2):75–79

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Cui H, Wang L, Yan L, Qian Y, Zheng XE, Wei W, Zhao J (2014) A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Assay Actuat B Chem 202(10):714–720

    Article  CAS  Google Scholar 

  10. Martinčič A, Cemazar M, Sersa G, Kovač V, Milačič R, Ščančar J (2013) A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta 116(22):141–148

    Article  Google Scholar 

  11. Yaroshenko DV, Grigoriev AV, Sidorova AA, Kartsova LA (2013) Determination of cisplatin in blood plasma by liquid chromatography with mass spectrometry detection. J Anal Chem 68(2):156–160

    Article  CAS  Google Scholar 

  12. Cai S, Tian X, Sun L, Hu H, Zheng S, Jiang H, Yu L, Zeng S (2015) Platinum (II)-oligonucleotide coordination based aptasensor for simple and selective detection of platinum compounds. Anal Chem 87(20):10542–10546

    Article  CAS  PubMed  Google Scholar 

  13. Niu S, Lv Z, Liu J, Bai W, Yang S, Chen A (2014) Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS One 9(10):e109263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sang F, Li X, Zhang Z, Liu J, Chen G (2017) Recyclable colorimetric sensor of Cr3+ and Pb2+ ions simultaneously using a zwitterionic amino acid modified gold nanoparticles. Spectrochim Part A 193:109–116

    Article  CAS  Google Scholar 

  15. Zhang Y, Li R, Xue Q, Li H, Liu J (2015) Colorimetric determination of copper(II) using a polyamine-functionalized gold nanoparticle probe. Microchim Acta 182(9–10):1677–1683

    Article  CAS  Google Scholar 

  16. He Y, Cheng F, Pang DW, Tang HW (2016) Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Microchim Acta 184(1):1–6

    Google Scholar 

  17. Du G, Zhang D, Xia B, Xu L, Wu S, Zhan S, Ni X, Zhou X, Wang L (2016) A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim Acta 183(7):2251–2258

    Article  CAS  Google Scholar 

  18. Li J, Tu W, Li H, Han M, Lan Y, Dai Z, Bao J (2014) In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized graphene. Anal Chem 86(2):1306–1312

    Article  CAS  PubMed  Google Scholar 

  19. Liu S, Du Z, Li P, Li F (2012) Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding. Biosens Bioelectron 35(1):443–446

    Article  CAS  PubMed  Google Scholar 

  20. Fan D, Zhai Q, Zhou W, Zhu X, Wang E, Dong S (2016) A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens Bioelectron 85:771–776

    Article  CAS  PubMed  Google Scholar 

  21. Pires TA, Narovec CM, Whelan RJ (2017) Effects of cationic proteins on gold nanoparticle/aptamer assays. ACS Omega 2(11):8222–8226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Z, Tan Y, Zhang C, Yin L, Ma H, Ye N, Qiang H, Lin Y (2014) A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron 56(1):46–50

    Article  CAS  PubMed  Google Scholar 

  23. Jeon W, Lee S, Manjunatha DH, Ban C (2013) A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal Biochem 439:6–11

    Article  CAS  Google Scholar 

  24. Luan Y, Chen J, Li C, Xie G, Fu H, Ma Z, Lu A (2015) Highly sensitive colorimetric detection of ochratoxin a by a label-free aptamer and gold nanoparticles. Toxins 7(12):5377–5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bala R, Kumar M, Bansal K, Sharma RK, Wangoo N (2016) Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens Bioelectron 85:445–449

    Article  CAS  PubMed  Google Scholar 

  26. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11(11):55–75

    Article  Google Scholar 

  27. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129(45):13939–13948

    Article  CAS  PubMed  Google Scholar 

  28. Sanfelice RC, Pavinatto A, Gonçalves VC, Correa DS, Mattoso LHC, Balogh DT (2016) Synthesis of a nanocomposite containing a water-soluble polythiophene derivative and gold nanoparticles. J Polym Sci Pol Phys 54(13):1245–1254

    Article  CAS  Google Scholar 

  29. Zhan S, Yu M, Lv J, Wang L, Zhou P (2014) Colorimetric detection of trace arsenic (III) in aqueous solution using arsenic aptamer and gold noparticles. Aust J Chem 67(5):813–818

    Article  CAS  Google Scholar 

  30. Wu Y, Liu L, Zhan S, Wang F, Zhou P (2012) Ultrasensitive aptamer biosensor for arsenic (III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137(18):4171–4178

    Article  CAS  PubMed  Google Scholar 

  31. Zhang D, Yang J, Ye J, Xu L, Xu H, Zhan S, Xia B, Wang L (2016) Colorimetric detection of bisphenol a based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 499:51–56

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Zhan S, Wang L, Zhou P (2014) Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139(6):1550–1561

    Article  CAS  PubMed  Google Scholar 

  33. Tan L, Chen Z, Zhang C, Wei X, Lou T, Zhao Y (2017) Colorimetric detection of Hg2+ based on the growth of aptamer-coated AuNPs: the effect of prolonging aptamer strands. Small 13(14):1–8

    Article  CAS  Google Scholar 

  34. Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA (2008) Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemist 47(19):5336–5353

    Article  CAS  Google Scholar 

  35. Zhang M, Liu YQ, Ye BC (2012) Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst 137(3):601–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of China (NSFC) (No. 21407035), Shandong Provincial Natural Science Foundation (ZR2014BM021), Technology and Development Program of Weihai (2014DXGJ15), HIT-NSRIF (2011101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuming Sang.

Ethics declarations

We declare that we have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 8270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, F., Liu, J., Zhang, X. et al. An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta 185, 267 (2018). https://doi.org/10.1007/s00604-018-2794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2794-6

Keywords

Navigation