Skip to main content
Log in

Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a novel recyclable substrate for highly sensitive surface-enhanced Raman scattering (SERS) studies. It consists of gold nanorods (AuNRs) self-assembled on a TiO2 film and combines the high SERS enhancement of assembled AuNRs with the self-cleaning property of the TiO2 film. It overcomes limitations of conventional SERS substrates such as limited sensitivity, high costs, and poor recyclability. The packing density of the AuNRs on the TiO2 film can be well adjusted, and therefore the SERS enhancement factor of the substrates can be tuned. For the optimized substrate, the SERS enhancement factor is as high as 5.4 × 1010 (Raman laser at 782 nm with 10% of 1.15 mW). This indicates extremely high sensitivity and is promising in terms of single molecule detection. Raman mapping experiments showed the SERS signal to be homogeneously distributed over the whole surface, with a maximal deviation of 3.5%. The SERS activity of this substrate can be restored by degradation of the probe molecules through TiO2 photocatalysis under UV irradiation. In our perception, these findings open a new venue for developing ultra-sensitive and recyclable SERS substrates.

Bilayer composites composed of gold nanorods (AuNRs) and titanium dioxide (TiO2) show strong surface enhanced Raman scattering enhancement under 782-nm laser excitation and display high sensitivity and good recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caglayan MG, Kasap E, Cetin D, Suludere Z, Tamer U (2017) Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X. Microchim Acta 184:1059–1067

    Article  CAS  Google Scholar 

  2. Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182:1775–1782

    Article  CAS  Google Scholar 

  3. Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2015) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182:119–127

    Article  CAS  Google Scholar 

  4. Bu Y, Lee SW (2015) Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim Acta 182:1313–1321

    Article  CAS  Google Scholar 

  5. Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM (2017) Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta 184:219–227

    Article  CAS  Google Scholar 

  6. Wang T, Hu X, Dong S (2008) A renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle Microtubes. Small 4:781–786

    Article  CAS  Google Scholar 

  7. Huang X, Neretina S, El-Sayed MA (2009) Gold Nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  8. Villa JEL, Santos DP, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183:2745–2752

    Article  CAS  Google Scholar 

  9. Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181:23–43

    Article  CAS  Google Scholar 

  10. Ueno K, Misawa H, (2011) Strong photon-molecule coupling fields for chemical reactions. In photochemistry: volume 39, the Royal Society of Chemistry: Vol. 39, pp 228-255

  11. Liu K, Zheng Y, Lu X, Thai T, Lee NA, Bach U, Gooding JJ (2015) Biocompatible gold Nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 31:4973–4980

    Article  CAS  Google Scholar 

  12. Botti S, Cantarini L, Almaviva S, Puiu A, Rufoloni A (2014) Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules. Chem Phys Lett 592:277–281

    Article  CAS  Google Scholar 

  13. Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824

    Article  CAS  Google Scholar 

  14. Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on au-coated ZnO Nanorods. ACS Appl Mater Interfaces 3:2557–2563

    Article  CAS  Google Scholar 

  15. Zhang N, Yang M-Q, Liu S, Sun Y, Xu Y-J (2015) Waltzing with the versatile platform of graphene to synthesize composite Photocatalysts. Chem Rev 115:10307–10377

    Article  CAS  Google Scholar 

  16. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Article  CAS  Google Scholar 

  17. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  18. Chen L, Tian J, Qiu H, Yin Y, Wang X, Dai J, Wu P, Wang A, Chu L (2009) Preparation of TiO2 nanofilm via sol–gel process and its photocatalytic activity for degradation of methyl orange. Ceram Int 35:3275–3280

    Article  CAS  Google Scholar 

  19. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) Quantitative evaluation of the Photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J Phys Chem B 107:1028–1035

    Article  CAS  Google Scholar 

  20. Bu Y, Park SJ, Lee S-W (2014) Diamine-linked array of metal (au, ag) nanoparticles on glass substrates for reliable surface-enhanced Raman scattering (SERS) measurements. Curr Appl Phys 14:784–789

    Article  Google Scholar 

  21. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Rd C, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605

    Article  CAS  Google Scholar 

  22. Yoon JH, Lim J, Yoon S (2012) Controlled assembly and Plasmonic properties of asymmetric Core–satellite Nanoassemblies. ACS Nano 6:7199–7208

    Article  CAS  Google Scholar 

  23. Li X, Hu H, Li D, Shen Z, Xiong Q, Li S, Fan HJ (2012) Ordered Array of gold Semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl Mater Interfaces 4:2180–2185

    Article  CAS  Google Scholar 

  24. Fernández-López C, Polavarapu L, Solís DM, Taboada JM, Obelleiro F, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J (2015) Gold Nanorod–pNIPAM hybrids with reversible Plasmon coupling: synthesis, modeling, and SERS properties. ACS Appl Mater Interfaces 7:12530–12538

    Article  Google Scholar 

  25. Du Y, Zhao Y, Qu Y, Chen C-H, Chen C-M, Chuang C-H, Zhu Y (2014) Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J Mater Chem C 2:4683–4691

    Article  CAS  Google Scholar 

  26. Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, Liao X, Cheng L (2017) A microfluidic chip based on an ITO support modified with ag-au nanocomposites for SERS based determination of melamine. Microchim Acta 184:279–287

    Article  CAS  Google Scholar 

  27. White JL, Baruch MF, Pander Iii JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB (2015) Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and Photoelectrodes. Chem Rev 115:12888–12935

    Article  CAS  Google Scholar 

  28. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based Photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  Google Scholar 

  29. Petrova H, Perez Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the Australian Research Council (ARC) projects (DP1096185, DP160104456, FT0990942 and others) for this work. We also acknowledge access to the Monash University Microscopy and Microanalysis Research Facilities through Monash Centre for Electron Microscopy (MCEM), in conjunction with Melbourne Centre for Nanofabrication (MCN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuchuan Jiang or Huanting Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3.19 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Liu, K., Hu, Y. et al. Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Microchim Acta 184, 2805–2813 (2017). https://doi.org/10.1007/s00604-017-2301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2301-5

Keywords

Navigation