Skip to main content
Log in

In-situ synthesized gold nanoparticles modified Mo2C MXene for surface enhanced Raman scattering

  • Original Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

Abstract

Herein, we demonstrate a proof-of-concept of using Mo2C MXene and gold nanoparticles (NPs) hybrid as an efficient surface-enhanced Raman scattering (SERS) substrate for organic pollutants detection. Mo2C MXene/Au hybrid is synthesized by an in-situ reduction of Au3+ ions onto Mo2C MXene nanosheets and characterized for its optical and structural properties. For the hybrid structures, we first synthesized Mo2C MXene by hydrofluoric acid etching of Mo2Ga2C and subsequent delamination with dimethyl sulfoxide to obtain few-layered nanosheets. The concentration of HAuCl4 for in-situ formation of Au was optimized with UV–Vis spectroscopy and probed with high resolution transmission electron microscopy. X-ray diffraction confirms the presence of Au NPs and MXene, while scanning and transmission electron microscopy analyses reveal the loading of Au NPs with an average size of ~ 9 nm on MXene few-layer particles. Based on our X-ray photoelectron spectroscopy results, we proposed a synthesis mechanism in which the functional groups of Mo2C MXene take an active part in reducing the gold precursor to form gold NPs. The optimized Mo2C/Au hybrid was then coated onto silicon and studied as a potential SERS substrate utilizing methylene blue as a model dye. Further, the comparison of the studies with rhodamine 6G confirms and justifies the role of the Mo2C/Au hybrid in signal enhancement. The preliminary findings demonstrate an enhancement factor of 2.2 × 104 and a detection limit of 0.01 μM (10–8 M) for optimal Au loading for MB. The fabricated SERS substrate is stable for nearly 1 month and exhibits excellent signal reproducibility with ~ 88% retention of the signal. These findings can be further extended to other MXenes to obtain in-situ synthesized hybrid for SERS as well as other applications including sensors, photocatalysis, and electrocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raman C, Krishnan K (1928) A new type of secondary radiation. Nature 121:501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  2. Ferraro JR (2003) Introductory Raman spectroscopy. Elsevier, New York

    Google Scholar 

  3. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  4. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  5. Adrian FJ (1982) Charge transfer effects in surface-enhanced Raman scatteringa. J Chem Phys 77(11):5302–5314. https://doi.org/10.1063/1.443800

    Article  CAS  Google Scholar 

  6. Otto A (2005) The ‘chemical’(electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36(6–7):497–509. https://doi.org/10.1002/jrs.1355

    Article  CAS  Google Scholar 

  7. Kahraman M, Mullen ER, Korkmaz A, Wachsmann-Hogiu S (2017) Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 6(5):831–852. https://doi.org/10.1515/nanoph-2016-0174

    Article  CAS  Google Scholar 

  8. Cao Y, Zhang J, Yang Y, Huang Z, Long NV, Fu C (2015) Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl Spectrosc Rev 50(6):499–525. https://doi.org/10.1080/05704928.2014.923901

    Article  CAS  Google Scholar 

  9. Wu L, Wang W, Zhang W, Huilan Su, Liu Q, Jiajun Gu, Deng T, Zhang Di (2018) Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic materials. NPG Asia Mater 10(1):e462–e462. https://doi.org/10.1038/am.2017.230

    Article  CAS  Google Scholar 

  10. Sharma V, Krishnan V (2018) Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sens Actuators B Chem 262:710–719. https://doi.org/10.1016/j.snb.2018.01.230

    Article  CAS  Google Scholar 

  11. Jency DA, Parimaladevi R, Sathe GV, Umadevi M (2018) Detect, remove: a new paradigm in sensing and removal of PCBs from reservoir soil via SERS-active ZnO triggered gold nanocomposites. Appl Surf Sci 449:638–646. https://doi.org/10.1016/j.apsusc.2017.11.260

    Article  CAS  Google Scholar 

  12. Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y et al (2015) Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun 6(1):1–7. https://doi.org/10.1038/ncomms8800

    Article  CAS  Google Scholar 

  13. Song Q, Ye F, Yin X, Li W, Li H, Liu Y, Li K et al (2017) Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv Mater 29(31):1701583. https://doi.org/10.1002/adma.201701583

    Article  CAS  Google Scholar 

  14. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  Google Scholar 

  15. Shevchuk K, Sarycheva A, Gogotsi Y (2022) Evaluation of two-dimensional transition-metal carbides and carbonitrides (MXenes) for SERS substrates. MRS Bull. https://doi.org/10.1557/s43577-022-00276-8

    Article  Google Scholar 

  16. Naguib M, Kurtoglu M, Presser V, Jun Lu, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  17. Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen Mo, Guo L (2019) Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc 141(14):5856–5862. https://doi.org/10.1021/jacs.9b00029

    Article  CAS  Google Scholar 

  18. Muehlethaler C, Considine CR, Menon V, Lin W-C, Lee Y-H, Lombardi JR (2016) Ultrahigh Raman enhancement on monolayer MoS2. ACS Photon 3(7):1164–1169. https://doi.org/10.1021/acsphotonics.6b00213

    Article  CAS  Google Scholar 

  19. Cudazzo P, Sponza L, Giorgetti C, Reining L, Sottile F, Gatti M (2016) Exciton band structure in two-dimensional materials. Phys Rev Lett 116(6):066803. https://doi.org/10.1103/PhysRevLett.116.066803

    Article  CAS  Google Scholar 

  20. Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y (2017) Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J Phys Chem C 121(36):19983–19988. https://doi.org/10.1021/acs.jpcc.7b08180

    Article  CAS  Google Scholar 

  21. Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11(9):8892–8900. https://doi.org/10.1021/acsnano.7b03129

    Article  CAS  Google Scholar 

  22. Fan X, Ding Y, Liu Y, Liang J, Chen Y (2019) Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7):8124–8134. https://doi.org/10.1021/acsnano.9b03161

    Article  CAS  Google Scholar 

  23. Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M (2016) One-step solution processing of Ag, Au and Pd@ MXene hybrids for SERS. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep32049

    Article  CAS  Google Scholar 

  24. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851. https://doi.org/10.1021/la9019475

    Article  CAS  Google Scholar 

  25. Murphy S, Huang L, Kamat PV (2011) Charge-transfer complexation and excited-state interactions in porphyrin–silver nanoparticle hybrid structures. J Phys Chem C 115(46):22761–22769. https://doi.org/10.1021/jp205711x

    Article  CAS  Google Scholar 

  26. Zhu X, Liu P, Ting Xue Yu, Ge SA, Sheng Y, Ruimei Wu, Lulu Xu, Tang K, Wen Y (2021) A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceram Int 47(1):173–184. https://doi.org/10.1016/j.ceramint.2020.08.121

    Article  CAS  Google Scholar 

  27. Yue M, Li F, Nianhang Lu, Yao P, Xue T, Liu P (2019) Synthesis of two-dimensional Ti3C2Tx/Au nanosheets with SERS performance. Appl Opt 58(30):8290–8294. https://doi.org/10.1364/AO.58.008290

    Article  CAS  Google Scholar 

  28. Lin K-Q, Yi J, Shu Hu, Liu B-J, Liu J-Y, Wang X, Ren B (2016) Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J Phys Chem C 120(37):20806–20813. https://doi.org/10.1021/acs.jpcc.6b02098

    Article  CAS  Google Scholar 

  29. Li K, Jiao T, Xing R, Zou G, Zhou J, Zhang L, Peng Q (2018) Fabrication of tunable hierarchical MXene@ AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater 61(5):728–736. https://doi.org/10.1007/s40843-017-9196-8

    Article  CAS  Google Scholar 

  30. He H, Jin S, Fan G, Wang L, Qianku Hu, Zhou A (2018) Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C. Ceram Int 44(18):22289–22296. https://doi.org/10.1016/j.ceramint.2018.08.353

    Article  CAS  Google Scholar 

  31. Meshkian R, Näslund L-Å, Halim J, Jun Lu, Barsoum MW, Rosen J (2015) Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Mater 108:147–150. https://doi.org/10.1016/j.scriptamat.2015.07.003

    Article  CAS  Google Scholar 

  32. Naguib M, Mashtalir O, Carle J, Presser V, Jun Lu, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  33. Sarycheva A (2021) Raman spectroscopy of 2D transition metal carbides and nitrides (MXenes). Drexel University

  34. Silva M, Cesarino I (2019) Evaluation of a nanocomposite based on reduced graphene oxide and gold nanoparticles as an electrochemical platform for detection of sulfamethazine. J Comp Sci 3(2):59. https://doi.org/10.3390/jcs3020059

    Article  CAS  Google Scholar 

  35. Tai G, Zeng T, Jin Yu, Zhou J, You Y, Wang X, Hongrong Wu, Sun Xu, Tingsong Hu, Guo W (2016) Fast and large-area growth of uniform MoS 2 monolayers on molybdenum foils. Nanoscale 8(4):2234–2241. https://doi.org/10.1039/C5NR07226C

    Article  CAS  Google Scholar 

  36. Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Nanoparticle size reduction during laser ablation in aqueous solutions of cyclodextrins. In: Photon processing in microelectronics and photonics III, vol 5339. SPIE, 2004, pp 84–92. https://doi.org/10.1117/12.525499

  37. Devi P, Hipp KN, Thakur A, Lai RY (2020) Waste to wealth translation of e-waste to plasmonic nanostructures for surface-enhanced Raman scattering. Appl Nanosci 10(5):1615–1623. https://doi.org/10.1007/s13204-020-01273-6

    Article  CAS  Google Scholar 

  38. Salazar MF, Arreola VMA, Panikar SS, Reddy KCS, Martínez BAM, Robledo AKR, Rivera-Muñoz EM, Strupiechonski E, Bugallo ADL (2021) MoSe2 monolayer crystallinity improvement and phase engineering for ultrasensitive SERS detection. FlatChem 29:100282. https://doi.org/10.1016/j.flatc.2021.100282

    Article  CAS  Google Scholar 

  39. D’Apuzzo F, Sengupta RN, Overbay M, Aronoff JS, Rogacs A, Barcelo SJ (2019) A generalizable single-chip calibration method for highly quantitative SERS via inkjet dispense. Anal Chem 92(1):1372–1378. https://doi.org/10.1021/acs.analchem.9b04535

    Article  CAS  Google Scholar 

  40. Limbu TB, Chitara B, Garcia Cervantes MY, Zhou Y, Huang S, Tang Y, Yan F (2020) Unravelling the thickness dependence and mechanism of surface-enhanced Raman scattering on Ti3C2TX MXene nanosheets. J Phys Chem C 124(32):17772–17782. https://doi.org/10.1021/acs.jpcc.0c05143

    Article  CAS  Google Scholar 

  41. Liu R, Jiang Li, Zizhen Yu, Chen Yi, Rui Xu, Jin S (2020) Flexible SERS platform based on Ti3C2Tx-modified filter paper: preparation and SERS application. Appl Opt 59(26):7846–7852. https://doi.org/10.1364/AO.398454

    Article  CAS  Google Scholar 

  42. Peng Y, Cai P, Yang L, Liu Y, Zhu L, Zhang Q, Liu J, Huang Z, Yang Y (2020) Theoretical and experimental studies of Ti3C2 MXene for surface-enhanced Raman spectroscopy-based sensing. ACS Omega 5(41):26486–26496. https://doi.org/10.1021/acsomega.0c03009

    Article  CAS  Google Scholar 

  43. Xie H, Li P, Shao J, Huang H, Chen Y, Jiang Z, Chu PK, Xue-Feng Yu (2019) Electrostatic self-assembly of Ti3C2Tx MXene and gold nanorods as an efficient surface-enhanced raman scattering platform for reliable and high-sensitivity determination of organic pollutants. ACS Sens 4(9):2303–2310. https://doi.org/10.1021/acssensors.9b00778

    Article  CAS  Google Scholar 

  44. Benchakar M, Natu V, Elmelegy TA, Sokol M, Snyder J, Comminges C, Morais C, Célérier S, Habrioux A, Barsoum MW (2020) On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene. J Electrochem Soc 167(12):124507

    Article  CAS  Google Scholar 

  45. Das RK, Gogoi N, Babu PJ, Sharma P, Mahanta C, Bora U (2012) The synthesis of gold nanoparticles using Amaranthus spinosus leaf extract and study of their optical properties. Adv Mater Phys Chem 2(4):275–281. https://doi.org/10.4236/ampc.2012.24040

    Article  Google Scholar 

  46. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Materials Engineering Laboratory, Indian Association for the Cultivation Science, Kolkata is acknowledged for supplying us Mo2Ga2C MAX phase for this work. Dr. Jiban Jyoti Panda (INST, Mohali) is acknowledged for the FTIR characterizations of the samples.

Funding

PR thanks the Department of Science & Technology, Government of India, for funding the completion of this work via SR/WOS-A/CS-75/2018 under the Women Scientist Scheme.

Author information

Authors and Affiliations

Authors

Contributions

PR: Conceptualization, Investigation, Methodology, Data Analysis and Validation, Writing original draft. PD: Supervision, Conceptualization, Data Curation, Resources, Writing- review & editing.

Corresponding author

Correspondence to Pooja Devi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, P., Devi, P. In-situ synthesized gold nanoparticles modified Mo2C MXene for surface enhanced Raman scattering. Graphene and 2D mater 7, 107–117 (2022). https://doi.org/10.1007/s41127-022-00054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-022-00054-y

Keywords

Navigation