Skip to main content
Log in

Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: Highly selective and sensitive determination of thrombin and oxytetracycline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fluorescence amplification strategy for selective and sensitive fluorescent assays based on aptamer-triggered directional hydrolysis and on the use of metal organic frameworks (MOFs) of type MIL-101. The method is implemented by mixing MIL-101, fluorescein-labeled DNA probes, exonuclease of type RecJf, and targets. A smart design of the three-adenine bulge on the DNA probe facilitates exonuclease-assisted directional hydrolysis, making the strategy universal for determination of both proteins and small molecules as well. Good selectivity is accomplished due to the use of MIL-101 protected aptamers, while high sensitivity resulted from exonuclease-assisted target-recycling signal amplification. The power of the method is demonstrated by analyzing the two model analytes thrombin (a fairly large protein) and oxytetracycline (OTC; a small molecule antibiotic). The limits of detection are 15 pM for thrombin and 4.2 nM for OTC. This is two orders of magnitude lower than that of conventional 1:1 homogeneous fluorescence assays. The strategy was successfully applied to the analysis of thrombin and OTC in real samples. In our perception, the strategy presented here has a wide scope for selective and sensitive detection of trace analytes for which appropriate DNA probes can be identified.

Schematic of an aptamer-triggered amplification strategy for sensitive bioassays based on fluorescence quenching of a MOF and 5′→3′ directional hydrolysis of RecJf exonuclease. The adenine-bulge on the DNA probe facilitates exonuclease hydrolysis, making the strategy universal for both proteins and small molecules detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li L, Li WW (2015) Colorimetric kinetic determination of potassium ions based on the use of a specific aptamer and catalytically active gold nanoparticles. Microchim Acta 182(13–14):2307–2312

    Article  CAS  Google Scholar 

  2. He JC, Li GK, Hu YL (2015) Aptamer recognition induced target-bridged strategy for proteins detection based on magnetic chitosan and silver/chitosan nanoparticles using surface-enhanced Raman spectroscopy. Anal Chem 87(21):11039–11047

    Article  CAS  Google Scholar 

  3. Li YB, Miao XM, Ling LS (2015) Triplex DNA: a new platform for polymerase chain reaction-based biosensor. Sci Rep 5:13010

    Article  CAS  Google Scholar 

  4. Yang LL, Tao YZ, Yue GY, Li RB, Qiu B, Guo LH, Lin ZY, Yang HH (2016) Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem 88(10):5097–5103

    Article  CAS  Google Scholar 

  5. Huang Y, Chen J, Zhao SL, Shi M, Chen ZF, Liang H (2013) Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein. Anal Chem 85(9):4423–4430

    Article  CAS  Google Scholar 

  6. Yang C, Wang Y, Marty J, Yang XR (2011) Aptamer-based colorimetric biosensing of Ochratoxin a using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724–2727

    Article  CAS  Google Scholar 

  7. Lu CH, Li J, Lin MH, Wang YW, Yang HH, Chen X, Chen GN (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Edit 49(45):8454–8457

    Article  CAS  Google Scholar 

  8. Lin XY, Cui L, Huang YS, Lin Y, Xie Y, Zhu Z, Yin BC, Chen X, Yang CJ (2014) Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chem Commun 50(57):7646–7648

    Article  CAS  Google Scholar 

  9. Dulkeith E, Ringler M, Klar TA, Feldmann J, Muñoz Javier A, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5(4):585–589

    Article  CAS  Google Scholar 

  10. Liao QG, Wei BH, Luo LG (2017) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184(2):627–632

    Article  CAS  Google Scholar 

  11. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183(4):1501–1506

    Article  CAS  Google Scholar 

  12. Qiang WB, Li W, Li XQ, Chen X, Xu DK (2014) Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci 5(8):3018–3024

    Article  CAS  Google Scholar 

  13. Fan DQ, Zhu XQ, Zhai QF, Wang EK, Dong SJ (2016) Polydopamine nanotubes as an effective fluorescent quencher for highly sensitive and selective detection of biomolecules assisted with exonuclease III amplification. Anal Chem 88(18):9158–9165

    Article  CAS  Google Scholar 

  14. Hu YL, Liao J, Wang DM, Li GK (2014) Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal Chem 86(8):3955–3963

    Article  CAS  Google Scholar 

  15. Yu HL, Long DY (2016) Highly chemiluminescent metal-organic framework of type MIL-101(Cr) for detection of hydrogen peroxide and pyrophosphate ions. Microchim Acta 183(12):3151–3157

    Article  CAS  Google Scholar 

  16. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  Google Scholar 

  17. Guo JF, Li CM, Hu XL, Huang CZ, Li YF (2014) Metal-organic framework MIL-101 enhanced fluorescence anisotropy for sensitive detection of DNA. RSC Adv 4(18):9379–9382

    Article  CAS  Google Scholar 

  18. Fang JM, Leng F, Zhao XJ, Hu XL, Li YF (2014) Metal-organic framework MIL-101 as a low background signal platform for label-free DNA detection. Analyst 139(4):801–806

    Article  CAS  Google Scholar 

  19. Bin X, Fang YS, Yin SZ, Tong ZX, Shan HS, Ping CG, Sheng YY (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4:2826–2830

    Article  Google Scholar 

  20. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103(27):10186–10191

    Article  CAS  Google Scholar 

  21. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem-Eur J 10(6):1373–1382

    Article  CAS  Google Scholar 

  22. Bao ZB, Yu L, Ren QL, Lu XY, Deng SG (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353(2):549–556

    Article  CAS  Google Scholar 

  23. Wang YH, Bao L, Liu ZH, Pang DW (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83(21):8130–8137

    Article  CAS  Google Scholar 

  24. Pena A, Pelantova N, Lino CM, Silveira MIN, Solich P (2005) Validation of an analytical methodology for determination of oxytetracycline and tetracycline residues in honey by HPLC with fluorescence detection. J Agr Food Chem 53(10):3784–3788

    Article  CAS  Google Scholar 

  25. Zhu X, Zheng HY, Wei XF, Lin ZY, Guo LH, Qiu B, Chen GN (2013) Metal-organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49(13):1276–1278

    Article  CAS  Google Scholar 

  26. Saleh SM, Ali R, Hirsch T, Wolfbeis OS (2011) Detection of biotin-avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles. J Nanopart Res 13:4603–4611

    Article  CAS  Google Scholar 

  27. Gomes HIAS, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61

    Article  CAS  Google Scholar 

  28. Yan J, Wang LD, Tang LH, Lin L, Liu Y, Li JH (2015) Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin. Biosens Bioelectron 70:404–410

    Article  CAS  Google Scholar 

  29. Yuan F, Chen HQ, Xu J, Zhang YY, Wu Y, Wang L (2014) Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem-Eur J 20(10):2888–2894

    Article  CAS  Google Scholar 

  30. Chang HX, Tang LH, Wang Y, Jiang JH, Li JH (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346

    Article  CAS  Google Scholar 

  31. Na WD, Liu XT, Wang L, Su XG (2015) Label-free aptamer biosensor for selective detection of thrombin. Anal Chim Acta 899:85–90

    Article  CAS  Google Scholar 

  32. Xue LY, Zhou XM, Xing D (2012) Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 84(8):3507–3513

    Article  CAS  Google Scholar 

  33. Zhao HM, Gao S, Liu M, Chang YY, Fan XF, Quan X (2013) Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim Acta 180(9–10):829–835

    Article  CAS  Google Scholar 

  34. An XT, Zhuo SJ, Zhang P, Zhu CQ (2015) Carbon dots based turn-on fluorescent probes for oxytetracycline hydrochloride sensing. RSC Adv 5(26):19853–19858

    Article  CAS  Google Scholar 

  35. Xu SH, Li XL, Mao YN, Gao T, Feng XY, Luo XL (2015) Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+ and oxytetracycline. Anal Bioanal Chem 408:2955–2962

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science FoundationᅟofᅟChinaᅟ(Nos.ᅟ21475153,ᅟ21575167ᅟand 21675178), the Guangdong Provincial Natural Science Foundation of China (No. 2015A030311020), and the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Science and Technology Program of China (No. 201604020165), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongke Li or Yuling Hu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3.83 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, G. & Hu, Y. Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: Highly selective and sensitive determination of thrombin and oxytetracycline. Microchim Acta 184, 2365–2373 (2017). https://doi.org/10.1007/s00604-017-2263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2263-7

Keywords

Navigation