Skip to main content

Advertisement

Log in

Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on upconversion nanocrystals (NCs) based on a fluoroapatite (FAp) support that was engineered to enable multimodal imaging by fluorescence imaging (FI), magnetic resonance imaging (MRI), and upconversion luminescence imaging. A fluorescein based fluorophore (FITC) was incorporated into the FAp nanocrystals and then doped with Yb(III) and Ho(III) by microwave-assisted solution combustion synthesis. The hexagonal phase nanocrystals (FITC-FAp:Yb/Ho) exhibit spindle like morphology with an average diameter and length of 15 nm and 196 nm, respectively. The doping concentration of the Yb (5 %) and Ho (0.6 %) was determined by ICP-MS. The nanocrystals exhibit upconversion luminescence when irradiated with NIR light of wavelength 980 nm. The emission spectrum consists of two bands centered at 542 nm (green emission) and 654 nm (red emission) corresponding to two transitions of Ho(III). The pump power dependence of upconversion luminescence intensity confirmed the 2-photon process. The presence of FITC in the nanocrystal imparts green fluorescence (peaking at 521 nm) by a conventional downconversion process. The presence of Ho(III) endows the NCs with paramagnetism. The magnetization is 21.063 emu∙g−1 at room temperature. The NCs exhibit a longitudinal relaxivity (r1) of 0.12 s−1∙mM−1, and a transverse relaxivity (r2) of 29 s−1∙mM−1, which makes the system suitable for developing T2 MRI contrast agents. The nanocrystals are surface aminized using polyethyleneimine (PEI) and covalently conjugated to folic acid (FA) in order to target the folate receptors that are overexpressed in many cancer cells. The FA-conjugated nanocrystals have been tested for their applicability in fluorescence imaging of HeLa cells. Their biocompatibility, upconversion and downconversion luminescence, and magnetism render these NCs potentially powerful nanoprobes for trimodal imaging.

Fluorescein-labeled fluorapatite nanocrystals codoped with Yb(III) and Ho(III) ions (FITC-FAp:Yb/Ho) have been prepared through microwave route. The up and downconversion luminescence, biocompatibility and magnetism are explored. The folic acid conjugated nanocrystals are promising candidates for trimodal imaging (up- and downconversion imaging and magnetic resonance imaging)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee SY, Jeon SI, Jung S, Chung IJ, Ahn C-H (2014) Targeted multimodal imaging modalities. Adv Drug Deliv Rev 76:60–78

    Article  CAS  Google Scholar 

  2. Jennings LE, Long NJ (2009) ‘two is better than one’-probes for dual modality molecular imaging. Chem Commun:3511–3524

  3. Ashokan A, Menon D, Nair S, Koyakutty M (2010) A molecular receptor targeted, hydroxyapatite nanocrystals based multi-modal contrast agent. Biomaterials 31:2606–2616

    Article  CAS  Google Scholar 

  4. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589

    Article  CAS  Google Scholar 

  5. Nikcevic I, Jokanovic V, Mitric M, Nedic Z, Makovec D, Uskokovic D (2004) Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J Solid State Chem 177:2565–2574

    Article  CAS  Google Scholar 

  6. Chen H, Sun K, Tang Z, Law RV, Mansfield JF, −Jakubowska AC, Clarkson, BH (2006) Synthesis of fluorapatite nanorods and nanowires by direct precipitation from solution. Cryst Growth Des 6: 1504–1508

    Article  CAS  Google Scholar 

  7. Hui J, Wang X (2011) Luminescent, colloidal, F-substituted, hydroxyapatite nanocrystals. Chem Eur J 17:6926–6930

    Article  CAS  Google Scholar 

  8. Fathi MH, Zahrani EM (2009) Mechanochemical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J Crystal Growth 311:1392–1403

    Article  CAS  Google Scholar 

  9. Eslami H, Hashjin MS, Tahriri M (2009) The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C 29:1387–1398

    Article  CAS  Google Scholar 

  10. Zeng H, Li X, Xie F, Teng L, Chen H (2014) Dextran-coated fluorapatite nanorods doped with lanthanides in labelling and directing osteogenic differentiation of bone marrow mesenchymal stem cells. J Mater Chem 2:3609–3617

    Article  CAS  Google Scholar 

  11. Hui J, Zhang X, Zhang Z, Wang S, Tao L, Wei Y, Wang X (2012) Fluoridated hap: ln3+ (Ln = Eu or Tb) nanaoparticles for cell-imaging. Nanoscale 4:6967–6970

    Article  CAS  Google Scholar 

  12. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee S-T, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33:2215–2222

    Article  CAS  Google Scholar 

  13. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14:582–596

    Article  CAS  Google Scholar 

  14. DaCosta MV, Doughan S, Han Y, Krull UJ (2014) Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta 832:1–33

    Article  CAS  Google Scholar 

  15. Sun L-D, Wang Y-F, Yan C-H (2014) Paradigms and challenges for Bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc Chem Res 47:1001–1009

    Article  CAS  Google Scholar 

  16. Chen C, Li C, Shi Z (2016) Current advances in lanthanide-doped upconversion nanostructures for detection and Bioapplication. Adv Sci 1600029:1–26

    Google Scholar 

  17. Boyer J-C, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal Upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 7:847–852

    Article  CAS  Google Scholar 

  18. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion LuminescentMaterials: advances and applications. Chem Rev 115:395–465

    Article  CAS  Google Scholar 

  19. Lecuna CR, Rodriguez RM, Valiente R (2011) Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+, 2 % Yb3+. Chem Mater 23:3442–3448

    Article  Google Scholar 

  20. Naccache R, Yu Q, Capobianco JA (2015) The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv Opt Mater 3:482–509

    Article  CAS  Google Scholar 

  21. Haase M, Schafer H (2011) Upconverting Naoparticles. Angew Chem Int Edn 50:5808–5829

    Article  CAS  Google Scholar 

  22. Hu X, Zhu J, Li X, Zhang X, Meng Q, Yuan L, Zhang J, Fu X, Duan X, Chen H, Ao Y (2015) Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labelling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Biomaterials 52:441–451

    Article  CAS  Google Scholar 

  23. Li X, Zhu J, Man Z, Ao Y, Chen H (2014) Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci Rep 4(4446):1–7

    Google Scholar 

  24. Nicolay K, Strijkers G, Grull H (2013)Gd- Containing nanoparticles as MRI contrast agents In: Merbach A et al (ed) The chemistry of contrast agents in medical magnetic resonance imaging, 2nd edn, Wiley, UK, pp 449–483

  25. Das GK, Johnson NJJ, Cramen J, Blasiak B, Latta P, Tomanek B, vanVeggel FCJM (2012) NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J Phys Chem Lett 3:524–529

    Article  CAS  Google Scholar 

  26. Imhof A, Megens M, Engelberts JJ, deLang DTN, Sprik R, Vos WL (1999) Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres. J Phys Chem B103:1408–1415

    Article  Google Scholar 

  27. Nabiyouni M, Zhou H, Luchini TJF, Bhaduri SB (2014) Formation of nanostructured fluorapatite via microwave assisted solution synthesis. Mater Sci Eng C 37:363–368

    Article  CAS  Google Scholar 

  28. Montazeri N, Jahandideh R, Biazer E (2011) Synthesis of fluorapatite- hydroxyapatite nanoparticles and toxicity investigations. Int J Nanomed 6:197–201

    CAS  Google Scholar 

  29. Liu S, Yin Y, Chen H (2013) PEO-assisted precipitation of human enamel-like fluorapatite films for tooth whitening. Cryst Eng Comm 15:5853–5859

    Article  CAS  Google Scholar 

  30. Escudero A, Calvo ME, Fernandez SR, de laFuente JM, Ocana M (2013) Microwave –assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and Fluoroapatie luminescent nanospindles functionalized with poly(acrylic acid). Langmuir 29:1985–1994

    Article  CAS  Google Scholar 

  31. Yu X, Liang S, Sun Z, Duan Y, Qin Y, Duan L, Xia H, Zhao P, Li D (2014) Microstructure and upconversion luminescence in Ho3+ and Yb3+ co-doped ZnO nanocrystalline powders. Opt Commun 313:90–93

    Article  CAS  Google Scholar 

  32. Norek M, Peters JA (2011) MRI contrast agents based on dysprosium or holmium. Progress in NMR 59:64–82

    Article  CAS  Google Scholar 

  33. Voung QL, Doorslaer SV, Bridot J-L, Argante C, Alejandro G, Hermann R, Disch S, Mattea C, Stapf S, Gossuin Y (2012) Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory. Magn Reson Mater Phy 25:467–478

    Article  Google Scholar 

  34. Kattel K, Park JY, Xu W, Kim HG, Lee EJ, Bony BA, Heo WC, Lee JJ, Jin S, Baeck JS, Chang Y, Kim TJ, Bae JE, Chae KS, Lee GH (2011) A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultra small Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl Mater Interfaces 3:3325–3334

    Article  CAS  Google Scholar 

  35. Ma J, Huang P, He M, Pan L, Zhou Z, Feng L, Gao G, Cui D, Ohys J (2012) Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. Chem B 116:14062–14070

    Article  CAS  Google Scholar 

  36. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  Google Scholar 

  37. Chen M, Yin M (2014) Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci 39:365–395

    Article  CAS  Google Scholar 

  38. Ai J, Xu Y, Li D, Liu Z, Wang E (2012) Folic acid as delivery vehicles: targeting folate conjugated fluorescent nanoparticles to tumour imaging. Talanta 101:32–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Director, National Centre for Ultrafast Process (NCUP, University of Madras), Director, CSIR-NIIST (Thiruvananthapuram), Head, SAIF-IIT Madras, Director, IISER (Thiruvanathapuram), Director, SAIF-STIC-CUSAT (Kochi) and the Head, Department of Chemistry, University of Kerala (Kariavattom Campus), Thiruvananthapuram, for the sophisticated characterization techniques provided for the work. S.S. S would like to acknowledge University Grant Commission (UGC) New Delhi, for providing financial assistance through Teacher Fellowship under Faculty Improvement programme (FIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Sony.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syamchand, S.S., Sony, G. Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells. Microchim Acta 183, 3209–3219 (2016). https://doi.org/10.1007/s00604-016-1970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1970-9

Keywords

Navigation