Skip to main content
Log in

Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Paramagnetic nanoparticles, mainly rare earth oxides and hydroxides, have been produced these last few years for use as MRI contrast agents. They could become an interesting alternative to iron oxide particles. However, their relaxation properties are not well understood.

Materials and methods

Magnetometry, 1H and 2H NMR relaxation results at different magnetic fields and electron paramagnetic resonance are used to investigate the relaxation induced by paramagnetic particles. When combined with computer simulations of transverse relaxation, they allow an accurate description of the relaxation induced by paramagnetic particles.

Results

For gadolinium hydroxide particles, both T 1 and T 2 relaxation are due to a chemical exchange of protons between the particle surface and bulk water, called inner sphere relaxation. The inner sphere is also responsible for T 1 relaxation of dysprosium, holmium, terbium and erbium containing particles. However, for these latter compounds, T 2 relaxation is caused by water diffusion in the field inhomogeneities created by the magnetic particle, the outer-sphere relaxation mechanism. The different relaxation behaviors are caused by different electron relaxation times (estimated by electron paramagnetic resonance).

Conclusion

These findings may allow tailoring paramagnetic particles: ultrasmall gadolinium oxide and hydroxide particles for T 1 contrast agents, with shapes ensuring the highest surface-to-volume ratio. All the other compounds present interesting T 2 relaxation performance at high fields. These results are in agreement with computer simulations and theoretical predictions of the outer-sphere and static dephasing regime theories. The T 2 efficiency would be optimum for spherical particles of 40–50 nm radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Modo MJM, Bulte JWM (2007) Molecular and cellular MR imaging. CRC Press, Cleveland

    Book  Google Scholar 

  2. Aime S, Cabella C, Colombatto S, Crich SG, Gianolio E, Maggioni F (2002) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16:394–406

    Article  PubMed  Google Scholar 

  3. Jung CW, Jacobs P (1995) Physical and chemical properties of Superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Article  PubMed  CAS  Google Scholar 

  4. Engstrom M, Klasson A, Pedersen H, Vahlberg C, Käll PO, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. Magn Reson Mater Phy Biol Med 19:180–186

    Article  Google Scholar 

  5. Fortin MA, Petoral RM, Söderlind F, Klasson A, Engström M, Veres T, Käll PO, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18:395501

    Article  Google Scholar 

  6. Arrais A, Botta M, Avedano S, Giovenzana GB, Gianolio E, Boccaleri E, Stanghellini PL, Aime S (2008) Carbon coated microshells containing nanosized Gd(III) oxidic phases for multiple bio-medical applications. Chem Commun (45):5936–5938

  7. Norek M, Pereira GA, Geraldes CFGC, Denkova A, Zhou W, Peters JA (2007) NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. J Phys Chem C 111:10240–10246

    Article  CAS  Google Scholar 

  8. Norek M, Kampert E, Zeitler U, Peters JA (2008) Tuning of the size of DY2O3 nanoparticles for optimal performance as an MRI contrast agent. J Am Chem Soc 130:5335–5340

    Article  PubMed  CAS  Google Scholar 

  9. Gossuin Y, Hocq A, Vuong QL, Disch S, Hermann RP, Gillis P (2008) Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 19:475102

    Article  PubMed  Google Scholar 

  10. Yin YD, Hong GY (2006) Synthesis and characterization of Gd(OH)(3) nanobundles. J Nanoparticle Res 8:755–760

    Article  CAS  Google Scholar 

  11. Song XC, Zheng YF, Wang Y (2008) Selected-control synthesis of dysprosium hydroxide and oxide nanorods by adjusting hydrothermal temperature. Mater Res Bull 43:1106–1111

    Article  CAS  Google Scholar 

  12. Zhang N, Yi R, Zhou L, Gao G, Shi R, Qiu G, Liu X (2009) Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods. Mater Chem Phys 114:160–167

    Article  CAS  Google Scholar 

  13. Happy Tok AIY, Boey FYC, Huebner R, Ng SH (2006) Synthesis of dysprosium oxide by homogeneous precipitation. J Electroceramics 17:75–78

    Article  Google Scholar 

  14. Happy Tok AIY, Su LT, Boey FYC, Ng SH (2007) Homogeneous precipitation of Dy2O3 nanoparticles-effects of synthesis parameters. J Nanosci Nanotechnol 7:907–915

    Article  PubMed  CAS  Google Scholar 

  15. Soliman SA, Abu-Zied BM (2009) Thermal genesis, characterization, and electrical conductivity measurements of terbium oxide catalyst obtained from terbium acetate. Thermochim Acta 491:84–91

    Article  CAS  Google Scholar 

  16. Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zheng W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Lumin 102:445–450

    Article  Google Scholar 

  17. Bridot JL, Faure A-C, Dayde D, Rivière C, Le Duc G, Billotey C, Janier M, Josserand V, Coll J-L, Perriat P, Roux S, Tillement O (2009) Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J Mater Chem 19:2328–2335

    Article  CAS  Google Scholar 

  18. Qian LW, Gui YC, Guo SA, Qiang G, Qian XF (2009) Controlled synthesis of light rare-earth hydroxide nanorods via a simple solution route. J Phys Chem Solids 70:688–693

    Article  CAS  Google Scholar 

  19. Jia G, You H, Liu K, Zheng Y, Guo N, Jia J, Zhang H (2010) Highly uniform YBO3 hierarchical architectures: facile synthesis and tunable luminescence properties. Chem Eur J 16:2930–2937

    Article  PubMed  CAS  Google Scholar 

  20. Li L, Yang HK, Moon BK, Choi BC, Jeong JH, Kim KH (2010) Photoluminescent properties of Ln(2)O(3):Eu3+ (Ln = Y, Lu and Gd) prepared by hydrothermal process and sol-gel method. Mater Chem Phys 119:471–477

    Article  CAS  Google Scholar 

  21. Petoral RM, Söderlind F, Klasson A, Suska A, Fortin MA, Abrikossova N, Selegård L, Käll P-O, Engström M, Uvdal K (2009) Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties. J Phys Chem C 113:6913–6920

    Article  CAS  Google Scholar 

  22. Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM (2007) Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. Nanotechnology 18:055102

    Article  Google Scholar 

  23. Das GK, Heng BC, Ng S-C, White T, Loo JSC, D’Silva L, Padmanabhan P, Bhakoo KK, Selvan ST, Tan TTY (2010) Gadolinium oxide ultra narrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26:8959–8965

    Article  PubMed  CAS  Google Scholar 

  24. Yoon YS, Lee B-I, Lee KS, Im GH, Byeon S-H, Lee JH, Lee IS (2009) Surface modification of exfoliated layered gadolinium hydroxide for the development of multimodal contrast agents for MRI and fluorescence imaging. Adv Funct Mater 19:3375–3380

    Article  CAS  Google Scholar 

  25. Yoon YS, Lee B-I, Lee KS, Heo H, Lee JH, Byeon S-H, Lee IS (2010) Fabrication of a silica sphere with fluorescent and MR contrasting GdPO4 nanoparticles from layered gadolinium hydroxide. Chem Commun 46:3654–3656

    Article  CAS  Google Scholar 

  26. Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) MR relaxation properties of superparamagnetic particles. Wiley Interdisciplinary Reviews—Nanomed Nanobiotechnol 1:299–310

    Article  CAS  Google Scholar 

  27. Cullity BD, Graham CD (2008) Introduction to magnetic materials, 2nd edn. Wiley-IEEE Press, Hoboken

    Book  Google Scholar 

  28. Klasson A, Ahrén M, Hellqvist E, Söderlind F, Rosén A, Käll P-O, Uvdal K, Engström M (2008) Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol Imaging 3:106–111

    Article  PubMed  CAS  Google Scholar 

  29. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  30. Néel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys Paris 3:137–198

    Google Scholar 

  31. Ahrén M, Selegård L, Klasson A, Söderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll P-O, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26:5753–5762

    Article  PubMed  Google Scholar 

  32. Cheung ENM, Alvares RDA, Oakden W, Chaudhary R, Hill ML, Pichaandi J, Mo GCH, Yip C, Macdonald PM, Stanisz GJ, van Veggel FCJM, Cheung RSP (2010) Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater 22:4728–4739

    Article  CAS  Google Scholar 

  33. Choi ES, Park JY, Baek MJ, Xu W, Kattel K, Kim JH, Lee JJ, Chang J, Kim TJ, Bae JE, Chae KS, Suh KJ, Lee GH (2010) Water-soluble ultra-small manganese oxide surface doped gadolinium oxide (Gd2O3@MnO) nanoparticles for MRI contrast agent. Eur J Inorg Chem 28:4555–4560

    Article  Google Scholar 

  34. Sánchez P, Valero E, Gálvez N, Domínguez-Vera JM, Marinone M, Poletti G, Corti M, Lascialfari A (2009) MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans 5:800–804

    Article  PubMed  Google Scholar 

  35. Park JH, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3:3663–3669

    Article  PubMed  CAS  Google Scholar 

  36. Deo A, Fogel M, Cowper SE (2007) Nephrogenic systemic fibrosis: a population study examining the relationship of disease development to gadolinium exposure. Clin J Am Soc Nephrol 2:264–267

    Article  PubMed  Google Scholar 

  37. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  PubMed  CAS  Google Scholar 

  38. Gillis P, Moiny F, Brooks RA (2002) On T2-Shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med 47:257–263

    Article  PubMed  Google Scholar 

  39. Vuong QL, Gillis P, Gossuin Y (2011) Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents. J Magn Reson 212:139–148

    Article  PubMed  CAS  Google Scholar 

  40. Yin S, Akita S, Shinozaki M, Li R, Sato T (2008) Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction. J Mater Sci 43:2234–2239

    Article  CAS  Google Scholar 

  41. Zhang J, Liu ZG, Lin J, Fang JY (2005) Y2O3 microprisms with trilobal cross section. Cryst Growth Des 5:1527–1530

    Article  CAS  Google Scholar 

  42. McIntyre LJ, Prior TJ, Fogg AM (2010) Observation and isolation of layered and framework ytterbium hydroxide phases using in situ energy-dispersive X-ray diffraction. Chem Mater 22:2635–2645

    Article  CAS  Google Scholar 

  43. Fang Y-P, Xu A-W, You L-P, Song R-Q, Yu JC, Zhang H-X, Li Q, Liu H-Q (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13:955–960

    Article  CAS  Google Scholar 

  44. (1977) Handbook of chemistry and physics. CRC Press, Cleveland

  45. Gossuin Y, Roch A, Muller RN, Gillis P (2002) An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magn Reson 158:36–42

    Article  PubMed  CAS  Google Scholar 

  46. Mc Connel J (1987) The theory of nuclear magnetic relaxation in liquids. Cambridge university press, Cambridge

    Google Scholar 

  47. Satoh A, Chantrell RW, Kamiyama S-I, Coverdale GN (1996) Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. J Colloid Interface Sci 178:620–627

    Article  CAS  Google Scholar 

  48. Platas-Iglesias C, Vander Elst L, Zhou W, Muller RN, Geraldes CFG, Mashmeyer T, Peters JA (2002) Zeolite GdNaY nanoparticles with very high relaxitivity for application as contrast agents in magnetic resonance imaging. Chem Eur J 8:5121–5131

    Article  PubMed  CAS  Google Scholar 

  49. Brodbeck CM, Iton LE (1985) The EPR spectra of Gd3+ and Eu2+ in glassy systems. J Chem Phys 83:4285

    Article  CAS  Google Scholar 

  50. Du G, Van Tendeloo G (2005) Preparation and structure analysis of Gd(OH)3 nanorods. Nanotechnology 16:595–597

    Article  CAS  Google Scholar 

  51. Reuben J (1975) Electron spin relaxation in aqueous solutions of gadolinium(III)-aquo, cacodylate and bovine serum albumin complexes. J Phys Chem 75:3164

    Article  Google Scholar 

  52. Toth E, Helm L, Kellar KE, Merbach AE (1999) Gd(DTPA-bisamide)alkyl copolymers: a hint for the formation of MRI contrast agents with very high relaxivity. Chem Eur J 5:1202–1211

    Article  CAS  Google Scholar 

  53. Zitha-Bovens E, Muller RN, Laurent S, Vander Elst L, Geraldes CFGC, van Bekkum H, Peters JA (2005) Structure and dynamics of lanthanide complexes of TTHA and TTHA-bisamides as studied by NMR, NMRD and EPR. Helv Chim Acta 88:618–632

    Article  CAS  Google Scholar 

  54. Brovelli S, Chiodini N, Meinardi F, Lauria A, Lorenzi R, Vodopivec B, Mozzati MC, Paleari A (2009) Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study. Phys Rev B 79:153108

    Article  Google Scholar 

  55. Dantelle G, Mortier M, Vivien D (2007) EPR and optical studies of erbium-doped βPbF2 single crystals and nanocrystals in transparent oxyfluoride glass-ceramics. Phys Chem Chem Phys 9:5591–5598

    Article  PubMed  CAS  Google Scholar 

  56. Abragam A, Bleaney B (1970) Electron paramagnetic resonance. Clarendon press, Oxford

    Google Scholar 

  57. Bertini I, Capozzi F, Luchinat C, Nicastro G, Xia Z (1993) Water proton relaxation for some lanthanide aqua ions in solution. J Phys Chem 97:6351–6354

    Article  CAS  Google Scholar 

  58. Gueron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J Mag Reson 19:58–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are, as usual, grateful to Dr Alain Roch for interesting and helpful discussions. Professor Robert N Muller is acknowledged for the access to the NMR relaxometers and spectrometers. FNRS-F.R.S. is also acknowledged for financial support (4.4507.10). Quoc Lam Vuong is a research associate of the F.R.S.-FNRS. Gabriela Alejandro thanks the ERASMUS MUNDUS program, the University of Antwerp and CONICET for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Gossuin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuong, Q.L., Van Doorslaer, S., Bridot, JL. et al. Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory. Magn Reson Mater Phy 25, 467–478 (2012). https://doi.org/10.1007/s10334-012-0326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0326-7

Keywords

Navigation